Convolutional Neural Network Based On-Line Defect Recognition in Additive Manufacturing Using Image Processing

卷积神经网络 计算机科学 人工智能 直线(几何图形) 模式识别(心理学) 人工神经网络 图像处理 图像(数学) 生产线 计算机视觉 工程类 数学 机械工程 几何学
作者
Harshal P. Varade,Sonal C. Bhangale,P. M. Patare,Vaibhav Ghanghav,Santosh Kumar Sharma,P. William
标识
DOI:10.1109/iccakm58659.2023.10449655
摘要

For the Selective Laser Melting (SLM) of metal powders, it is important to design a method of machine learning for online issue identification that makes use of automated image processing. To allow the earliest possible discovery and rectification of faults in the material that originate from non-conformities in the manufacturing process. When analyzing the in-process pictures that are taken while the layer-by-layer SLM processing is taking place, bi-stream deep convolutional neural networks are used as the primary tool. It is conceivable, via the use of automated feature learning and feature fusion, to discover patterns that are related with SLM -unfavorable conditions. The significance of the machine learning approach for the online detection of defects that are the consequence of process non-conformities has been shown and validated via the use of experimental testing and analysis. This lays the foundation for the component quality assurance and adaptive SLM process management that will follow. When compared to the data sets that were used for training or validation, CNNs demonstrated improved generalizability. Furthermore, it was shown that the size of the defect has an effect on the accuracy of CNN, which raises the prospect that very little errors may be made with the use of procedures that do not modify the surface morphology of the build plate. These findings point to a connection between the beginning of anomalies, such as a severe absence of fusion, and the presence of process ejection in the body.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安青牛发布了新的文献求助10
2秒前
2秒前
CipherSage应助元宝采纳,获得10
4秒前
Dull完成签到,获得积分20
5秒前
7秒前
7秒前
7秒前
8秒前
风趣乐天发布了新的文献求助50
8秒前
善良秋尽完成签到 ,获得积分10
10秒前
书竹发布了新的文献求助10
12秒前
Orange应助Light采纳,获得10
13秒前
13秒前
13秒前
Tristan发布了新的文献求助10
13秒前
汉堡包应助odzyhing采纳,获得10
13秒前
开放菀发布了新的文献求助10
13秒前
英俊的铭应助忐忑的阑香采纳,获得10
15秒前
15秒前
夏日发布了新的文献求助10
16秒前
20秒前
Xinyi发布了新的文献求助10
21秒前
尊敬的半梅完成签到 ,获得积分10
23秒前
25秒前
LH1993发布了新的文献求助10
28秒前
方脸怪完成签到,获得积分10
32秒前
mashibeo发布了新的文献求助30
34秒前
36秒前
月蚀六花完成签到,获得积分10
36秒前
39秒前
wschenau应助月蚀六花采纳,获得10
40秒前
今夕何夕完成签到 ,获得积分10
40秒前
42秒前
可爱的函函应助开放菀采纳,获得10
42秒前
丹初夕完成签到 ,获得积分10
43秒前
feimengxia完成签到 ,获得积分10
45秒前
小青发布了新的文献求助10
45秒前
47秒前
48秒前
沧海一笑完成签到,获得积分10
48秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220