COACT: Coronary artery centerline tracker

交叉口(航空) 计算机视觉 跟踪(教育) 人工智能 基本事实 计算机科学 过程(计算) 医学 心脏病学 心理学 教育学 操作系统 工程类 航空航天工程
作者
Xiaogang Li,Lianchang Ji,Rongrong Zhang,Hongrui You,Lisheng Xu,Stephen E. Greenwald,Yu Sun,Libo Zhang,Benqiang Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (5): 3541-3554
标识
DOI:10.1002/mp.16873
摘要

Abstract Background The curved planar reformation (CPR) technique is one of the most commonly used methods in clinical practice to locate coronary arteries in medical images. Purpose The artery centerline is the cornerstone for the generation of the CPR image. Here, we describe the development of a new fully automatic artery centerline tracker with the aim of increasing the efficiency and accuracy of the process. Methods We propose a COronary artery Centerline Tracker (COACT) framework which consists of an ostium point finder (OPFinder) model, an intersection point detector (IPDetector) model and a set of centerline tracking strategies. The output of OPFinder is the ostium points. The function of the IPDetector is to predict the intersections of a sample sphere and the centerlines. The centerline tracking process starts from two ostium points detected by the OPFinder, and combines the results of the IPDetector with a series of strategies to gradually reconstruct the coronary artery centerline tree. Results Two coronary CT angiography (CCTA) datasets were used to validate the models. Dataset1 contains 160 cases (32 for test and 128 for training) and dataset2 contains 70 cases (20 for test and 50 for training). The results show that the average distance between the ostium points predicted by the OPFinder and the manually annotated ostium points was 0.88 mm, which is similar to the differences between the results obtained by two observers (0.85 mm). For the IPDetector, the average overlap of the predicted and ground truth intersection points was 97.82% and this is also close to the inter‐observer agreement of 98.50%. For the entire coronary centerline tree, the overlap between the results obtained by COACT and the gold standard was 94.33%, which is slightly lower than the inter‐observer agreement, 98.39%. Conclusions We have developed a fully automatic centerline tracking method for CCTA scans and achieved a satisfactory result. The proposed algorithms are also incorporated in the medical image analysis platform TIMESlice ( https://slice‐doc.netlify.app ) for further studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hdh完成签到,获得积分10
刚刚
wangtf关注了科研通微信公众号
刚刚
雨姐科研应助帆帆帆采纳,获得10
刚刚
lancerimpp完成签到,获得积分10
1秒前
111完成签到,获得积分10
1秒前
明亮的青旋完成签到 ,获得积分10
2秒前
大方的书雁完成签到,获得积分10
2秒前
luria完成签到,获得积分10
2秒前
研友_8WzJOZ完成签到,获得积分10
3秒前
飘逸蘑菇完成签到 ,获得积分10
3秒前
电子屎壳郎完成签到,获得积分10
3秒前
April完成签到 ,获得积分10
3秒前
潇洒的蝴蝶完成签到,获得积分10
4秒前
菜就多练完成签到,获得积分10
4秒前
深情安青应助袅袅采纳,获得10
4秒前
林林完成签到,获得积分10
4秒前
5秒前
5秒前
LXK完成签到,获得积分10
6秒前
6秒前
谦让水香完成签到,获得积分10
6秒前
有魅力的白玉完成签到 ,获得积分10
6秒前
四个金太阳完成签到 ,获得积分10
6秒前
小城故事和冰雨完成签到,获得积分10
6秒前
恋风阁完成签到 ,获得积分10
7秒前
7秒前
小马哥完成签到,获得积分10
7秒前
白紫寒完成签到,获得积分10
8秒前
i_jueloa完成签到 ,获得积分10
9秒前
9秒前
1107任务报告完成签到,获得积分0
9秒前
勤恳冰淇淋完成签到 ,获得积分10
9秒前
小八ga发布了新的文献求助20
9秒前
烧饼拌糖完成签到,获得积分10
10秒前
沫柠完成签到 ,获得积分10
10秒前
南宫硕完成签到 ,获得积分10
10秒前
19826536343完成签到,获得积分10
10秒前
myl完成签到,获得积分10
11秒前
玉子完成签到 ,获得积分10
12秒前
嘀嘀嘀完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645234
求助须知:如何正确求助?哪些是违规求助? 4768151
关于积分的说明 15027004
捐赠科研通 4803757
什么是DOI,文献DOI怎么找? 2568448
邀请新用户注册赠送积分活动 1525778
关于科研通互助平台的介绍 1485451