已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Image Recognition-Assisted Atomic Force Microscopy for Single-Cell Efficient Mechanics in Co-culture Environments

力谱学 原子力显微镜 纳米技术 缩进 显微镜 粘附 化学 材料科学 生物物理学 荧光显微镜 荧光 人工智能 计算机科学 光学 复合材料 物理 生物
作者
Xuliang Yang,Yanqi Yang,Zhihui Zhang,Mi Li
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (1): 837-852 被引量:12
标识
DOI:10.1021/acs.langmuir.3c03046
摘要

Atomic force microscopy (AFM)-based force spectroscopy assay has become an important method for characterizing the mechanical properties of single living cells under aqueous conditions, but a disadvantage is its reliance on manual operation and experience as well as the resulting low throughput. Particularly, providing a capacity to accurately identify the type of the cell grown in co-culture environments without the need of fluorescent labeling will further facilitate the applications of AFM in life sciences. Here, we present a study of deep learning image recognition-assisted AFM, which not only enables fluorescence-independent recognition of the identity of single co-cultured cells but also allows efficient downstream AFM force measurements of the identified cells. With the use of the deep learning-based image recognition model, the viability and type of individual cells grown in co-culture environments were identified directly from the optical bright-field images, which were confirmed by the following cell growth and fluorescent labeling results. Based on the image recognition results, the positional relationship between the AFM probe and the targeted cell was automatically determined, allowing the precise movement of the AFM probe to the target cell to perform force measurements. The experimental results show that the presented method was applicable not only to the conventional (microsphere-modified) AFM probe used in AFM indentation assay for measuring the Young's modulus of single co-cultured cells but also to the single-cell probe used in AFM-based single-cell force spectroscopy (SCFS) assay for measuring the adhesion forces of single co-cultured cells. The study illustrates deep learning imaging recognition-assisted AFM as a promising approach for label-free and high-throughput detection of single-cell mechanics under co-culture conditions, which will facilitate unraveling the mechanical cues involved in cell–cell interactions in their native states at the single-cell level and will benefit the field of mechanobiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Seven完成签到 ,获得积分10
1秒前
仁怡完成签到 ,获得积分10
2秒前
大贺呀完成签到,获得积分10
3秒前
ace发布了新的文献求助10
4秒前
cc完成签到,获得积分20
4秒前
汉堡包应助模拟卷采纳,获得30
5秒前
Willow完成签到,获得积分10
9秒前
9秒前
对3药不起发布了新的文献求助10
9秒前
英姑应助娜娜采纳,获得10
10秒前
ccm应助123采纳,获得30
10秒前
小马甲应助123采纳,获得30
10秒前
舒心的小刺猬完成签到,获得积分10
11秒前
11秒前
lwm不想看文献完成签到 ,获得积分10
12秒前
模拟卷完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
顾矜应助LYZ采纳,获得10
17秒前
zrk发布了新的文献求助10
17秒前
18秒前
嘎嘣脆的桃儿完成签到,获得积分10
18秒前
Junsir发布了新的文献求助10
18秒前
乐辰发布了新的文献求助10
18秒前
Shmily完成签到,获得积分10
20秒前
21秒前
ddj发布了新的文献求助10
23秒前
执着的傲蕾完成签到 ,获得积分10
26秒前
星辰大海应助吃死你啦啦采纳,获得10
28秒前
29秒前
29秒前
29秒前
30秒前
杰哥完成签到 ,获得积分10
30秒前
小二郎应助zrk采纳,获得10
31秒前
潘润朗完成签到,获得积分10
31秒前
虚幻的冬瓜完成签到 ,获得积分10
34秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345203
求助须知:如何正确求助?哪些是违规求助? 4480262
关于积分的说明 13945786
捐赠科研通 4377612
什么是DOI,文献DOI怎么找? 2405382
邀请新用户注册赠送积分活动 1397974
关于科研通互助平台的介绍 1370340