Deep Learning Image Recognition-Assisted Atomic Force Microscopy for Single-Cell Efficient Mechanics in Co-culture Environments

力谱学 原子力显微镜 纳米技术 缩进 显微镜 粘附 化学 材料科学 生物物理学 荧光显微镜 荧光 人工智能 计算机科学 光学 复合材料 物理 生物
作者
Xuliang Yang,Yanqi Yang,Zhihui Zhang,Mi Li
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (1): 837-852 被引量:8
标识
DOI:10.1021/acs.langmuir.3c03046
摘要

Atomic force microscopy (AFM)-based force spectroscopy assay has become an important method for characterizing the mechanical properties of single living cells under aqueous conditions, but a disadvantage is its reliance on manual operation and experience as well as the resulting low throughput. Particularly, providing a capacity to accurately identify the type of the cell grown in co-culture environments without the need of fluorescent labeling will further facilitate the applications of AFM in life sciences. Here, we present a study of deep learning image recognition-assisted AFM, which not only enables fluorescence-independent recognition of the identity of single co-cultured cells but also allows efficient downstream AFM force measurements of the identified cells. With the use of the deep learning-based image recognition model, the viability and type of individual cells grown in co-culture environments were identified directly from the optical bright-field images, which were confirmed by the following cell growth and fluorescent labeling results. Based on the image recognition results, the positional relationship between the AFM probe and the targeted cell was automatically determined, allowing the precise movement of the AFM probe to the target cell to perform force measurements. The experimental results show that the presented method was applicable not only to the conventional (microsphere-modified) AFM probe used in AFM indentation assay for measuring the Young's modulus of single co-cultured cells but also to the single-cell probe used in AFM-based single-cell force spectroscopy (SCFS) assay for measuring the adhesion forces of single co-cultured cells. The study illustrates deep learning imaging recognition-assisted AFM as a promising approach for label-free and high-throughput detection of single-cell mechanics under co-culture conditions, which will facilitate unraveling the mechanical cues involved in cell–cell interactions in their native states at the single-cell level and will benefit the field of mechanobiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助科研通管家采纳,获得10
刚刚
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
arabidopsis应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
why应助科研通管家采纳,获得10
1秒前
调皮万怨发布了新的文献求助10
1秒前
CHENG_2025应助科研通管家采纳,获得10
1秒前
Lucas应助猪头军师采纳,获得10
1秒前
1秒前
3秒前
Yz发布了新的文献求助10
4秒前
霉小欧完成签到,获得积分10
4秒前
5秒前
qq发布了新的文献求助10
6秒前
chichi完成签到,获得积分10
8秒前
98发布了新的文献求助10
8秒前
萱萱发布了新的文献求助10
10秒前
李大壮完成签到 ,获得积分10
11秒前
连灵竹完成签到,获得积分0
12秒前
彩色夜阑完成签到,获得积分10
14秒前
17秒前
vivianzhang完成签到,获得积分10
17秒前
18秒前
开心冷霜发布了新的文献求助10
18秒前
CodeCraft应助Shan采纳,获得10
19秒前
影子发布了新的文献求助10
20秒前
22秒前
小杜完成签到,获得积分10
23秒前
读个博吧发布了新的文献求助10
24秒前
qq完成签到,获得积分10
26秒前
严惜发布了新的文献求助10
27秒前
28秒前
RTOS完成签到,获得积分10
29秒前
31秒前
Leslie完成签到,获得积分10
31秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962550
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141672
捐赠科研通 3241287
什么是DOI,文献DOI怎么找? 1791495
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803474