Deep Learning Image Recognition-Assisted Atomic Force Microscopy for Single-Cell Efficient Mechanics in Co-culture Environments

力谱学 原子力显微镜 纳米技术 缩进 显微镜 粘附 化学 材料科学 生物物理学 荧光显微镜 荧光 人工智能 计算机科学 光学 复合材料 物理 生物
作者
Xuliang Yang,Yanqi Yang,Zhihui Zhang,Mi Li
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (1): 837-852 被引量:12
标识
DOI:10.1021/acs.langmuir.3c03046
摘要

Atomic force microscopy (AFM)-based force spectroscopy assay has become an important method for characterizing the mechanical properties of single living cells under aqueous conditions, but a disadvantage is its reliance on manual operation and experience as well as the resulting low throughput. Particularly, providing a capacity to accurately identify the type of the cell grown in co-culture environments without the need of fluorescent labeling will further facilitate the applications of AFM in life sciences. Here, we present a study of deep learning image recognition-assisted AFM, which not only enables fluorescence-independent recognition of the identity of single co-cultured cells but also allows efficient downstream AFM force measurements of the identified cells. With the use of the deep learning-based image recognition model, the viability and type of individual cells grown in co-culture environments were identified directly from the optical bright-field images, which were confirmed by the following cell growth and fluorescent labeling results. Based on the image recognition results, the positional relationship between the AFM probe and the targeted cell was automatically determined, allowing the precise movement of the AFM probe to the target cell to perform force measurements. The experimental results show that the presented method was applicable not only to the conventional (microsphere-modified) AFM probe used in AFM indentation assay for measuring the Young's modulus of single co-cultured cells but also to the single-cell probe used in AFM-based single-cell force spectroscopy (SCFS) assay for measuring the adhesion forces of single co-cultured cells. The study illustrates deep learning imaging recognition-assisted AFM as a promising approach for label-free and high-throughput detection of single-cell mechanics under co-culture conditions, which will facilitate unraveling the mechanical cues involved in cell–cell interactions in their native states at the single-cell level and will benefit the field of mechanobiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33333完成签到,获得积分20
1秒前
周周发布了新的文献求助10
1秒前
踏实伟帮发布了新的文献求助10
1秒前
情怀应助洵音采纳,获得30
1秒前
Akim应助zuoyou采纳,获得10
1秒前
1秒前
2秒前
丘比特应助体贴的小天鹅采纳,获得10
3秒前
Liuying2809发布了新的文献求助10
3秒前
gejinxin给gejinxin的求助进行了留言
4秒前
4秒前
彭于晏应助美满的红酒采纳,获得10
4秒前
彭于晏应助毛健采纳,获得10
4秒前
善学以致用应助JunHan采纳,获得10
5秒前
跳跃发布了新的文献求助10
5秒前
5秒前
黄凯发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
9秒前
Shan发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
充电宝应助zzzz采纳,获得10
11秒前
12秒前
bunny发布了新的文献求助10
12秒前
15秒前
16秒前
JunHan发布了新的文献求助10
16秒前
shlin完成签到,获得积分10
17秒前
17秒前
zz应助摸鱼大王采纳,获得10
18秒前
猪猪hero应助摸鱼大王采纳,获得10
18秒前
wanci应助hh采纳,获得10
18秒前
Owen应助周周采纳,获得10
19秒前
xy820完成签到,获得积分20
20秒前
Shan完成签到,获得积分10
21秒前
天天学习完成签到,获得积分10
22秒前
Zer完成签到,获得积分0
22秒前
22秒前
23秒前
zzzzzz完成签到,获得积分10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742790
求助须知:如何正确求助?哪些是违规求助? 5410347
关于积分的说明 15345735
捐赠科研通 4883864
什么是DOI,文献DOI怎么找? 2625403
邀请新用户注册赠送积分活动 1574207
关于科研通互助平台的介绍 1531165