Decoding invariant spatiotemporal synergy patterns on muscle networks of lower-limb movements via surface electromyographic signals

不变(物理) 解码方法 计算机科学 运动(音乐) 腿部肌肉 物理医学与康复 下肢 人工智能 模式识别(心理学) 计算机视觉 数学 算法 声学 物理 医学 外科 数学物理
作者
Yuejiang Luo,Tianxiao Guo,Rui Wang,Siqi Mu,Kuan Tao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 106033-106033 被引量:1
标识
DOI:10.1016/j.bspc.2024.106033
摘要

Muscle network, which enables sport enthusiasts to understand the insightful mechanism in lower-limb movement, optimizes cross-linked force-generation modes, enhances sports performance and reduces the risk of injury. To investigate muscle network, synergy patterns via the decompositions of surface electromyographic (sEMG) signal with strengths of linkage are rigorously analyzed. Although existing literatures cover functionalities of muscle network or synergy patterns separately, little evidence shows their collective mechanism. In this work, we deciphered the mechanism of synergy patterns on muscle network among lower-limb muscles. The experiments were conducted on twelve muscles from ten participants, with each one running at four pre-setup fixed speeds on the treadmill and sEMG recorded. Seven synergy patterns were extracted via non-negative matrix (NMF) decomposition, after calculating the mean value of interpretation variance (VAF), and the dynamic time warping (DTW) algorithm along with cosine similarity (CS) were applied for time-varying activation coefficients. Further, we recapitulated synergy patterns on multiple running gait cycles, obtained spatiotemporal invariant characteristics of muscle network from them, and decoded the force-generation modes through muscle network. Our research indicates that the weight similarity of synergy patterns reached 97.73 % on average for seven synergies under four different running speeds, meaning that alteration of speeds exerts little effects on synergy patterns on muscle network during lower-limb movements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sq完成签到,获得积分10
刚刚
1秒前
ding应助hh采纳,获得10
2秒前
2秒前
4秒前
小眼儿发布了新的文献求助10
4秒前
milly完成签到,获得积分20
4秒前
鲜艳的八宝粥完成签到,获得积分10
7秒前
肥亮发布了新的文献求助10
7秒前
zxw完成签到,获得积分20
7秒前
展希希完成签到,获得积分20
8秒前
8秒前
ZhangR完成签到,获得积分10
10秒前
Lucas应助拔丝香芋采纳,获得10
10秒前
fsky发布了新的文献求助10
10秒前
Marcus完成签到,获得积分10
11秒前
星辰大海应助种桃老总采纳,获得10
11秒前
DHY完成签到,获得积分10
11秒前
12秒前
yar应助小李先绅采纳,获得10
12秒前
123完成签到,获得积分10
13秒前
13秒前
ailemonmint发布了新的文献求助10
14秒前
crown发布了新的文献求助10
14秒前
CipherSage应助懦弱的含芙采纳,获得10
14秒前
14秒前
Wecple完成签到 ,获得积分10
15秒前
体能行者完成签到,获得积分10
15秒前
结实彤完成签到 ,获得积分10
15秒前
17秒前
学术大亨发布了新的文献求助10
18秒前
老板来杯冷咖啡完成签到,获得积分10
18秒前
19秒前
潘宋发布了新的文献求助10
19秒前
20秒前
slim发布了新的文献求助10
22秒前
feng_yihan完成签到 ,获得积分10
22秒前
共享精神应助小眼儿采纳,获得10
24秒前
hh发布了新的文献求助10
25秒前
Kvolu29发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432