已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An efficient framework for controllable micromixer design through the fusion of data-driven modeling and machine learning insights: Numerical and experimental analysis

混合器 微通道 微流控 可控性 参数统计 迷惑 实验设计 计算机科学 生物系统 纳米技术 机械工程 材料科学 工程类 数学 统计 应用数学 生物
作者
Faridoddin Hassani,Farhad Sadegh Moghanlou,Asgar Minaei,Mohammad Vajdi,Ali Golshani,Afshin Kouhkord,Tohid Dehghani
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:6
标识
DOI:10.1063/5.0190888
摘要

Micromixers are inevitable components in microfluidics, micro-electro-mechanical devices, and numerous bio-chemical assays. By assays, we mean diverse analytical procedures encompassing gene engineering, the manipulation of genetic material; nanoparticle synthesis, focusing on the controlled creation of nanoparticles; and cell lysis, involving cell membranes disruption for the release of intracellular substances for diagnostic purposes. In these assays, the homogeneous mixture of two or more fluids is crucial. However, designing an efficient micromixer providing high homogeneity and low pressure drop, while maintaining controllability, is challenging. Controllability refers to the design of a micro-system tailored to meet the specific requirements of a given assay. This study proposes a controllable framework, combining machine learning and statistical modeling. The framework begins with the generation of a reference parametric micro-structure, herein a microchannel with L-shaped baffles and featuring seven variables. A response surface method, a data-driven modeling scheme, is used to establish functional relationships between design variables and objective functions. The study reveals that the baffle height significantly impacts the system functionality, increasing the mixing index by over 40% and the pressure drop by more than 220% when reaching its upper limit. Dean-like secondary vortexes are generated in the microchannel at Re = 10, demonstrating the efficiency of the implemented baffles. Subsequently, multi-objective optimization methods, non-dominated sorting genetic algorithm (NSGA-II) and differential evolution (DE), are employed, with adaptable variable constraints. Comparative analysis of the methods shows that DE finds superior optimum solutions in fewer iterations. Finally, an optimum structure is fabricated using soft lithography, and experimental tests are conducted for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YH应助mzf采纳,获得10
2秒前
4秒前
yydragen应助个性紫采纳,获得50
4秒前
汉堡包应助姜饼采纳,获得10
7秒前
9秒前
沉默访冬完成签到,获得积分10
11秒前
B站萧亚轩发布了新的文献求助10
14秒前
Auoroa完成签到,获得积分10
18秒前
Y20完成签到,获得积分10
19秒前
20秒前
22秒前
天天快乐应助柔弱的千秋采纳,获得10
24秒前
慕青应助hx采纳,获得10
25秒前
逝水无痕发布了新的文献求助10
25秒前
年轻访彤发布了新的文献求助10
27秒前
Superg完成签到,获得积分10
27秒前
28秒前
B站萧亚轩发布了新的文献求助10
29秒前
summer木完成签到,获得积分20
31秒前
整齐星月发布了新的文献求助10
33秒前
33秒前
司马绮山发布了新的文献求助10
33秒前
34秒前
35秒前
35秒前
yydragen应助小狗采纳,获得30
35秒前
年轻访彤完成签到,获得积分10
36秒前
小木木完成签到,获得积分10
36秒前
36秒前
37秒前
37秒前
橄榄绿发布了新的文献求助10
38秒前
林新煌完成签到 ,获得积分10
39秒前
欢玺完成签到,获得积分10
40秒前
称心热狗发布了新的文献求助10
40秒前
孙鑫完成签到,获得积分10
41秒前
坚强的小海豚完成签到,获得积分10
41秒前
清爽冰露完成签到,获得积分10
42秒前
芊芊发布了新的文献求助10
42秒前
文欣完成签到,获得积分20
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959835
求助须知:如何正确求助?哪些是违规求助? 3506093
关于积分的说明 11127809
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789445
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021