亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-based diagnosis of standard endoscopic ultrasonography scanning sites in the biliopancreatic system: A multicenter retrospective study

金标准(测试) 卷积神经网络 医学 内镜超声检查 人工智能 放射科 试验装置 核医学 计算机科学 模式识别(心理学) 内窥镜检查
作者
Shuxin Tian,Huiying Shi,Weigang Chen,Shijie Li,Chaoqun Han,Fei Du,Weijun Wang,Hao Wen,Yali Lei,Liang Deng,Jing Tang,Jinjie Zhang,Jing Lin,Lei Shi,Bo Ning,Kui Zhao,Jiarong Miao,Guobao Wang,Hui Huang,Xiaoxi Huang,Wenjie Kong,Xiaojuan Jin,Ding Zhang,Rui‐Biao Lin
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (3): 1637-1644
标识
DOI:10.1097/js9.0000000000000995
摘要

There are challenges for beginners to identify standard biliopancreatic system anatomical sites on endoscopic ultrasonography (EUS) images. Therefore, the authors aimed to develop a convolutional neural network (CNN)-based model to identify standard biliopancreatic system anatomical sites on EUS images.The standard anatomical structures of the gastric and duodenal regions observed by EUS was divided into 14 sites. The authors used 6230 EUS images with standard anatomical sites selected from 1812 patients to train the CNN model, and then tested its diagnostic performance both in internal and external validations. Internal validation set tests were performed on 1569 EUS images of 47 patients from two centers. Externally validated datasets were retrospectively collected from 16 centers, and finally 131 patients with 85 322 EUS images were included. In the external validation, all EUS images were read by CNN model, beginners, and experts, respectively. The final decision made by the experts was considered as the gold standard, and the diagnostic performance between CNN model and beginners were compared.In the internal test cohort, the accuracy of CNN model was 92.1-100.0% for 14 standard anatomical sites. In the external test cohort, the sensitivity and specificity of CNN model were 89.45-99.92% and 93.35-99.79%, respectively. Compared with beginners, CNN model had higher sensitivity and specificity for 11 sites, and was in good agreement with the experts (Kappa values 0.84-0.98).The authors developed a CNN-based model to automatically identify standard anatomical sites on EUS images with excellent diagnostic performance, which may serve as a potentially powerful auxiliary tool in future clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
云轩发布了新的文献求助10
8秒前
Hello应助lin采纳,获得10
12秒前
怡然自中完成签到 ,获得积分10
13秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
潇湘雪月完成签到,获得积分10
16秒前
shaylie完成签到 ,获得积分10
18秒前
婼汐完成签到 ,获得积分10
21秒前
24秒前
27秒前
lin发布了新的文献求助10
31秒前
41秒前
caca完成签到,获得积分0
43秒前
53秒前
Owen应助JulyP采纳,获得10
56秒前
南淮完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
cm发布了新的文献求助10
1分钟前
bkagyin应助Shutong采纳,获得10
1分钟前
Tristan完成签到 ,获得积分10
1分钟前
1分钟前
122319完成签到 ,获得积分10
1分钟前
1分钟前
脑洞疼应助cm采纳,获得10
1分钟前
1分钟前
Freddy完成签到 ,获得积分10
1分钟前
1分钟前
小白菜完成签到,获得积分10
1分钟前
ning完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
兜兜发布了新的文献求助10
1分钟前
娜娜完成签到,获得积分10
1分钟前
1分钟前
SQ完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628087
求助须知:如何正确求助?哪些是违规求助? 4715495
关于积分的说明 14963597
捐赠科研通 4785720
什么是DOI,文献DOI怎么找? 2555313
邀请新用户注册赠送积分活动 1516636
关于科研通互助平台的介绍 1477114