Artificial intelligence-based diagnosis of standard endoscopic ultrasonography scanning sites in the biliopancreatic system: A multicenter retrospective study

金标准(测试) 卷积神经网络 医学 内镜超声检查 人工智能 放射科 试验装置 核医学 计算机科学 模式识别(心理学) 内窥镜检查
作者
Shuxin Tian,Huiying Shi,Weigang Chen,Shijie Li,Chaoqun Han,Fei Du,Weijun Wang,Hao Wen,Yali Lei,Liang Deng,Jing Tang,Jinjie Zhang,Jing Lin,Lei Shi,Bo Ning,Kui Zhao,Jiarong Miao,Guobao Wang,Hui Huang,Xiaoxi Huang,Wenjie Kong,Xiaojuan Jin,Ding Zhang,Rui‐Biao Lin
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (3): 1637-1644
标识
DOI:10.1097/js9.0000000000000995
摘要

There are challenges for beginners to identify standard biliopancreatic system anatomical sites on endoscopic ultrasonography (EUS) images. Therefore, the authors aimed to develop a convolutional neural network (CNN)-based model to identify standard biliopancreatic system anatomical sites on EUS images.The standard anatomical structures of the gastric and duodenal regions observed by EUS was divided into 14 sites. The authors used 6230 EUS images with standard anatomical sites selected from 1812 patients to train the CNN model, and then tested its diagnostic performance both in internal and external validations. Internal validation set tests were performed on 1569 EUS images of 47 patients from two centers. Externally validated datasets were retrospectively collected from 16 centers, and finally 131 patients with 85 322 EUS images were included. In the external validation, all EUS images were read by CNN model, beginners, and experts, respectively. The final decision made by the experts was considered as the gold standard, and the diagnostic performance between CNN model and beginners were compared.In the internal test cohort, the accuracy of CNN model was 92.1-100.0% for 14 standard anatomical sites. In the external test cohort, the sensitivity and specificity of CNN model were 89.45-99.92% and 93.35-99.79%, respectively. Compared with beginners, CNN model had higher sensitivity and specificity for 11 sites, and was in good agreement with the experts (Kappa values 0.84-0.98).The authors developed a CNN-based model to automatically identify standard anatomical sites on EUS images with excellent diagnostic performance, which may serve as a potentially powerful auxiliary tool in future clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
婕婕子完成签到,获得积分10
刚刚
刚刚
一位用户发布了新的文献求助10
1秒前
Nicole发布了新的文献求助10
1秒前
xydmmm发布了新的文献求助10
1秒前
烟花应助dablack采纳,获得10
1秒前
爆米花应助Tomsen采纳,获得10
1秒前
1秒前
糖葫芦发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
浩二完成签到,获得积分10
4秒前
周星星发布了新的文献求助10
4秒前
5秒前
5秒前
大模型应助十三采纳,获得10
5秒前
我必中发布了新的文献求助10
6秒前
6秒前
6秒前
md发布了新的文献求助10
7秒前
7秒前
7秒前
李健的小迷弟应助李萌采纳,获得10
7秒前
保安队长发布了新的文献求助10
8秒前
慕青应助坦率听荷采纳,获得10
8秒前
hellokk发布了新的文献求助50
8秒前
浮游应助WSS采纳,获得10
8秒前
学术版7e发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Wenjian7761完成签到,获得积分10
10秒前
Jasper应助Dr.向采纳,获得10
10秒前
云澈完成签到,获得积分10
10秒前
深情安青应助小天才采纳,获得10
11秒前
wudizhuzhu233完成签到,获得积分10
11秒前
吃狗粮的猫完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020