Artificial intelligence-based diagnosis of standard endoscopic ultrasonography scanning sites in the biliopancreatic system: A multicenter retrospective study

金标准(测试) 卷积神经网络 医学 内镜超声检查 人工智能 放射科 试验装置 核医学 计算机科学 模式识别(心理学) 内窥镜检查
作者
Shuxin Tian,Huiying Shi,Weigang Chen,Shijie Li,Chaoqun Han,Fei Du,Weijun Wang,Hao Wen,Yali Lei,Liang Deng,Jing Tang,Jinjie Zhang,Jing Lin,Lei Shi,Bo Ning,Kui Zhao,Jiarong Miao,Guobao Wang,Hui Huang,Xiaoxi Huang,Wenjie Kong,Xiaojuan Jin,Ding Zhang,Rui‐Biao Lin
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (3): 1637-1644
标识
DOI:10.1097/js9.0000000000000995
摘要

There are challenges for beginners to identify standard biliopancreatic system anatomical sites on endoscopic ultrasonography (EUS) images. Therefore, the authors aimed to develop a convolutional neural network (CNN)-based model to identify standard biliopancreatic system anatomical sites on EUS images.The standard anatomical structures of the gastric and duodenal regions observed by EUS was divided into 14 sites. The authors used 6230 EUS images with standard anatomical sites selected from 1812 patients to train the CNN model, and then tested its diagnostic performance both in internal and external validations. Internal validation set tests were performed on 1569 EUS images of 47 patients from two centers. Externally validated datasets were retrospectively collected from 16 centers, and finally 131 patients with 85 322 EUS images were included. In the external validation, all EUS images were read by CNN model, beginners, and experts, respectively. The final decision made by the experts was considered as the gold standard, and the diagnostic performance between CNN model and beginners were compared.In the internal test cohort, the accuracy of CNN model was 92.1-100.0% for 14 standard anatomical sites. In the external test cohort, the sensitivity and specificity of CNN model were 89.45-99.92% and 93.35-99.79%, respectively. Compared with beginners, CNN model had higher sensitivity and specificity for 11 sites, and was in good agreement with the experts (Kappa values 0.84-0.98).The authors developed a CNN-based model to automatically identify standard anatomical sites on EUS images with excellent diagnostic performance, which may serve as a potentially powerful auxiliary tool in future clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
香蕉飞饼完成签到 ,获得积分10
刚刚
刚刚
敬老院N号应助李二牛采纳,获得30
刚刚
在水一方应助hif1a采纳,获得10
1秒前
1秒前
李爱国应助穆空采纳,获得10
1秒前
2秒前
2秒前
宵荷完成签到,获得积分10
3秒前
子非鱼发布了新的文献求助10
3秒前
皮凡发布了新的文献求助10
3秒前
3秒前
落英芬芳完成签到,获得积分10
4秒前
英俊的铭应助子车雁开采纳,获得30
4秒前
zhao发布了新的文献求助10
5秒前
lcm完成签到,获得积分10
5秒前
清爽冬卉发布了新的文献求助10
5秒前
May应助朴素的凉面采纳,获得20
5秒前
yznfly应助JPH1990采纳,获得30
6秒前
帅帅大王完成签到,获得积分20
7秒前
Cullen发布了新的文献求助10
7秒前
禅花游鱼完成签到,获得积分10
8秒前
研友_VZG7GZ应助琉璃岁月采纳,获得10
8秒前
小罗在无锡完成签到 ,获得积分10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
光影相生应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
sanages发布了新的文献求助10
10秒前
10秒前
漫漫发布了新的文献求助10
11秒前
英姑应助科研通管家采纳,获得100
11秒前
微风完成签到,获得积分10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
SHAO应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961465
求助须知:如何正确求助?哪些是违规求助? 3507798
关于积分的说明 11138163
捐赠科研通 3240268
什么是DOI,文献DOI怎么找? 1790870
邀请新用户注册赠送积分活动 872609
科研通“疑难数据库(出版商)”最低求助积分说明 803288