Systematic review and meta-analysis of prediction models used in cervical cancer

宫颈癌 荟萃分析 医学 计算机科学 内科学 癌症 数据科学
作者
Ashish Kumar Jha,Sneha Mithun,Umesh B. Sherkhane,Vinay Jaiswar,Biche Osong,Nilendu Purandare,Sadhana Kannan,Kumar Prabhash,Sudeep Gupta,Ben Vanneste,Venkatesh Rangarajan,André Dekker,Leonard Wee
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:139: 102549-102549 被引量:25
标识
DOI:10.1016/j.artmed.2023.102549
摘要

Cervical cancer is one of the most common cancers in women with an incidence of around 6.5 % of all the cancer in women worldwide. Early detection and adequate treatment according to staging improve the patient's life expectancy. Outcome prediction models might aid treatment decisions, but a systematic review on prediction models for cervical cancer patients is not available. We performed a systematic review for prediction models in cervical cancer following PRISMA guidelines. Key features that were used for model training and validation, the endpoints were extracted from the article and data were analyzed. Selected articles were grouped based on prediction endpoints i.e. Group1: Overall survival, Group2: progression-free survival; Group3: recurrence or distant metastasis; Group4: treatment response; Group5: toxicity or quality of life. We developed a scoring system to evaluate the manuscript. As per our criteria, studies were divided into four groups based on scores obtained in our scoring system, the Most significant study (Score > 60 %); Significant study (60 % > Score > 50 %); Moderately Significant study (50 % > Score > 40 %); least significant study (score < 40 %). A meta-analysis was performed for all the groups separately. The first line of search selected 1358 articles and finally 39 articles were selected as eligible for inclusion in the review. As per our assessment criteria, 16, 13 and 10 studies were found to be the most significant, significant and moderately significant respectively. The intra-group pooled correlation coefficient for Group1, Group2, Group3, Group4, and Group5 were 0.76 [0.72, 0.79], 0.80 [0.73, 0.86], 0.87 [0.83, 0.90], 0.85 [0.77, 0.90], 0.88 [0.85, 0.90] respectively. All the models were found to be good (prediction accuracy [c-index/AUC/R2] >0.7) in endpoint prediction. Prediction models of cervical cancer toxicity, local or distant recurrence and survival prediction show promising results with reasonable prediction accuracy [c-index/AUC/R2 > 0.7]. These models should also be validated on external data and evaluated in prospective clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiarrr发布了新的文献求助10
1秒前
柚柠发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
李健的小迷弟应助xzy采纳,获得10
2秒前
甜甜奇迹发布了新的文献求助10
3秒前
3秒前
cccc完成签到,获得积分10
4秒前
hhhhhhh发布了新的文献求助10
4秒前
米玄完成签到,获得积分10
4秒前
老实听云完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
慕青应助文艺奇迹采纳,获得30
6秒前
青山完成签到,获得积分10
6秒前
6秒前
上官夏寒发布了新的文献求助10
7秒前
恋返竹询发布了新的文献求助10
7秒前
思睿观通完成签到 ,获得积分10
7秒前
123123发布了新的文献求助10
7秒前
科研通AI2S应助zxxx采纳,获得10
8秒前
8秒前
11秒前
11秒前
danjuan应助kingyuan采纳,获得10
12秒前
所所应助上官夏寒采纳,获得10
12秒前
糖糖完成签到 ,获得积分10
14秒前
_ban完成签到 ,获得积分10
15秒前
Owen应助老实听云采纳,获得10
15秒前
吕懿完成签到,获得积分10
16秒前
xzy发布了新的文献求助10
16秒前
16秒前
17秒前
Doctor Tang完成签到,获得积分10
18秒前
20秒前
落伍的螃蟹完成签到,获得积分10
20秒前
Lucas应助周em12_采纳,获得10
20秒前
xzy完成签到,获得积分10
21秒前
21秒前
Rise完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749099
求助须知:如何正确求助?哪些是违规求助? 3292389
关于积分的说明 10076350
捐赠科研通 3007880
什么是DOI,文献DOI怎么找? 1651883
邀请新用户注册赠送积分活动 786858
科研通“疑难数据库(出版商)”最低求助积分说明 751861