From predictive to energy-based maintenance paradigm: Achieving cleaner production through functional-productiveness

支持向量机 断层(地质) 特征选择 工程类 人工智能 机器学习 特征提取 故障检测与隔离 计算机科学 执行机构 地质学 地震学
作者
Marko Orošnjak,Nebojša Brkljač,Dragoljub Šević,Maja Čavić,Dragana Oros,Marko Penčić
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:408: 137177-137177 被引量:11
标识
DOI:10.1016/j.jclepro.2023.137177
摘要

The introduction of the Energy-Based Maintenance (EBM) practice in Sustainable Manufacturing attracted significant academic attention, especially considering imposed European initiatives (e.g., Green Deal). Although traditional Predictive Maintenance practice uses Machine Learning tools, it still relies on secondary (waste) energy indicators of a p-f curve (e.g., vibration, temperature). We introduce the notion of Functional-Productiveness (FP) for setting thresholds in detecting "Quasi-fault" events considering hydraulic power signal. Discretised hydraulic signal with Recursive Feature Elimination (RFE) is used for feature extraction. Support Vector Machine (SVM), Random Forest (RF), Partial Least Square Discriminant Analysis (PLS-DA) and t-Distributed Stochastic Network Embedding (t-SNE) algorithms are used for the feature selection process. The extracted features show latent degradation of a hydraulic control system of a Rubber Mixing Machine performed by binary classification {None, Quasi-Fault} with SVM, RF, PLS-DA and Logistic Regression (LR). The results show that latent degradation led to a 26% drop in hydraulic power output compared to the initial state, while the existing diagnostic practice of Lubricant Condition Monitoring failed to provide such insights. Consequently, the study suggests that traditional monitoring practices that rely on static p-f indicators are becoming obsolete, leading to unnecessary energy waste and power loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信问枫完成签到 ,获得积分10
1秒前
99完成签到,获得积分10
2秒前
公西凝芙完成签到,获得积分10
3秒前
3秒前
科目三应助哈哈采纳,获得10
4秒前
5秒前
兴奋渊思完成签到 ,获得积分10
6秒前
7秒前
宋宋完成签到,获得积分20
7秒前
SYLH应助Hermit采纳,获得10
7秒前
百事从欢发布了新的文献求助10
9秒前
深情安青应助念姬采纳,获得10
10秒前
清晨完成签到 ,获得积分10
10秒前
10秒前
Orange应助吕健采纳,获得10
11秒前
幽默的妍完成签到 ,获得积分10
11秒前
13秒前
13秒前
yookia应助wu采纳,获得10
15秒前
16秒前
17秒前
19秒前
科研通AI2S应助论文顺利采纳,获得10
19秒前
20秒前
21秒前
百事从欢完成签到,获得积分10
21秒前
打打应助stone采纳,获得10
21秒前
温柔以蓝完成签到,获得积分10
22秒前
乐宝完成签到,获得积分10
23秒前
小圆圈发布了新的文献求助10
23秒前
23秒前
26秒前
26秒前
27秒前
lusuoshan完成签到,获得积分10
28秒前
化工牛马完成签到,获得积分10
30秒前
单纯的映真完成签到,获得积分10
30秒前
30秒前
JamesPei应助科研通管家采纳,获得10
31秒前
CAOHOU应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432