Pneumonia Detection Using Enhanced Convolutional Neural Network Model on Chest X-Ray Images

卷积神经网络 深度学习 计算机科学 接收机工作特性 数据集 肺炎 人工智能 试验装置 集合(抽象数据类型) 训练集 学习迁移 F1得分 模式识别(心理学) 机器学习 医学 内科学 程序设计语言
作者
Shadi Aljawarneh,Romesaa Al-Quraan
出处
期刊:Big data [Mary Ann Liebert, Inc.]
被引量:6
标识
DOI:10.1089/big.2022.0261
摘要

Pneumonia, caused by microorganisms, is a severely contagious disease that damages one or both the lungs of the patients. Early detection and treatment are typically favored to recover infected patients since untreated pneumonia can lead to major complications in the elderly (>65 years) and children (<5 years). The objectives of this work are to develop several models to evaluate big X-ray images (XRIs) of the chest, to determine whether the images show/do not show signs of pneumonia, and to compare the models based on their accuracy, precision, recall, loss, and receiver operating characteristic area under the ROC curve scores. Enhanced convolutional neural network (CNN), VGG-19, ResNet-50, and ResNet-50 with fine-tuning are some of the deep learning (DL) algorithms employed in this study. By training the transfer learning model and enhanced CNN model using a big data set, these techniques are used to identify pneumonia. The data set for the study was obtained from Kaggle. It should be noted that the data set has been expanded to include further records. This data set included 5863 chest XRIs, which were categorized into 3 different folders (i.e., train, val, test). These data are produced every day from personnel records and Internet of Medical Things devices. According to the experimental findings, the ResNet-50 model showed the lowest accuracy, that is, 82.8%, while the enhanced CNN model showed the highest accuracy of 92.4%. Owing to its high accuracy, enhanced CNN was regarded as the best model in this study. The techniques developed in this study outperformed the popular ensemble techniques, and the models showed better results than those generated by cutting-edge methods. Our study implication is that a DL models can detect the progression of pneumonia, which improves the general diagnostic accuracy and gives patients new hope for speedy treatment. Since enhanced CNN and ResNet-50 showed the highest accuracy compared with other algorithms, it was concluded that these techniques could be effectively used to identify pneumonia after performing fine-tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助呆呆要努力采纳,获得10
刚刚
Shinkai39完成签到,获得积分10
1秒前
修炼成绝发布了新的文献求助10
1秒前
嘻嘻嘻完成签到 ,获得积分10
3秒前
浮游应助guiyi666采纳,获得10
4秒前
专注的墨完成签到,获得积分10
4秒前
Yiy完成签到 ,获得积分0
5秒前
量子星尘发布了新的文献求助10
5秒前
苹果熊猫完成签到,获得积分10
6秒前
6秒前
6秒前
语上完成签到,获得积分10
6秒前
憨憨芸完成签到,获得积分10
7秒前
典雅碧空应助果冻采纳,获得10
8秒前
深情安青应助hebiniannian采纳,获得10
9秒前
shiqiang mu应助张lf采纳,获得10
9秒前
NexusExplorer应助1huiqina采纳,获得30
10秒前
10秒前
banbeikele完成签到,获得积分20
11秒前
11秒前
唐ZY123发布了新的文献求助10
11秒前
11秒前
cuihao完成签到,获得积分10
13秒前
13秒前
浮游应助DT采纳,获得10
14秒前
去时风完成签到,获得积分10
14秒前
15秒前
16秒前
Mia发布了新的文献求助10
17秒前
不想干活应助温柔衬衫采纳,获得10
17秒前
18秒前
李爱国应助风中思松采纳,获得10
18秒前
大个应助梨花诗采纳,获得10
18秒前
19秒前
wjw发布了新的文献求助10
20秒前
爆米花应助唐ZY123采纳,获得30
21秒前
Owen应助傻丢采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
1huiqina发布了新的文献求助30
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608373
求助须知:如何正确求助?哪些是违规求助? 4014956
关于积分的说明 12431782
捐赠科研通 3696131
什么是DOI,文献DOI怎么找? 2037842
邀请新用户注册赠送积分活动 1070949
科研通“疑难数据库(出版商)”最低求助积分说明 954875