Pneumonia Detection Using Enhanced Convolutional Neural Network Model on Chest X-Ray Images

卷积神经网络 深度学习 计算机科学 接收机工作特性 数据集 肺炎 人工智能 试验装置 集合(抽象数据类型) 训练集 学习迁移 F1得分 模式识别(心理学) 机器学习 医学 内科学 程序设计语言
作者
Shadi Aljawarneh,Romesaa Al-Quraan
出处
期刊:Big data [Mary Ann Liebert, Inc.]
被引量:6
标识
DOI:10.1089/big.2022.0261
摘要

Pneumonia, caused by microorganisms, is a severely contagious disease that damages one or both the lungs of the patients. Early detection and treatment are typically favored to recover infected patients since untreated pneumonia can lead to major complications in the elderly (>65 years) and children (<5 years). The objectives of this work are to develop several models to evaluate big X-ray images (XRIs) of the chest, to determine whether the images show/do not show signs of pneumonia, and to compare the models based on their accuracy, precision, recall, loss, and receiver operating characteristic area under the ROC curve scores. Enhanced convolutional neural network (CNN), VGG-19, ResNet-50, and ResNet-50 with fine-tuning are some of the deep learning (DL) algorithms employed in this study. By training the transfer learning model and enhanced CNN model using a big data set, these techniques are used to identify pneumonia. The data set for the study was obtained from Kaggle. It should be noted that the data set has been expanded to include further records. This data set included 5863 chest XRIs, which were categorized into 3 different folders (i.e., train, val, test). These data are produced every day from personnel records and Internet of Medical Things devices. According to the experimental findings, the ResNet-50 model showed the lowest accuracy, that is, 82.8%, while the enhanced CNN model showed the highest accuracy of 92.4%. Owing to its high accuracy, enhanced CNN was regarded as the best model in this study. The techniques developed in this study outperformed the popular ensemble techniques, and the models showed better results than those generated by cutting-edge methods. Our study implication is that a DL models can detect the progression of pneumonia, which improves the general diagnostic accuracy and gives patients new hope for speedy treatment. Since enhanced CNN and ResNet-50 showed the highest accuracy compared with other algorithms, it was concluded that these techniques could be effectively used to identify pneumonia after performing fine-tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助lignin采纳,获得10
刚刚
zdq10068发布了新的文献求助10
1秒前
cheng完成签到,获得积分10
3秒前
敏敏敏呐完成签到,获得积分10
3秒前
3秒前
yydragen应助孙朱珠采纳,获得10
3秒前
大模型应助笨笨的曼文采纳,获得10
4秒前
4秒前
里lilili完成签到,获得积分10
6秒前
6秒前
吴嘉俊发布了新的文献求助10
6秒前
落寞飞烟完成签到,获得积分10
7秒前
7秒前
琳毓完成签到 ,获得积分10
8秒前
时尚战斗机应助阔达苡采纳,获得10
8秒前
9秒前
褚洙完成签到,获得积分0
9秒前
zdq10068完成签到,获得积分10
11秒前
派大星和海绵宝宝完成签到,获得积分10
11秒前
风中远山完成签到,获得积分10
11秒前
dd发布了新的文献求助30
11秒前
Ava应助kk采纳,获得10
12秒前
琳毓关注了科研通微信公众号
12秒前
13秒前
15秒前
坐以待币完成签到 ,获得积分10
16秒前
xiaoyan.yao发布了新的文献求助10
16秒前
lignin发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
19秒前
neil_match完成签到,获得积分10
20秒前
22秒前
ommphey发布了新的文献求助30
24秒前
weing发布了新的文献求助10
25秒前
聪明的破茧完成签到,获得积分10
27秒前
xiaoyan.yao完成签到,获得积分10
27秒前
Angow发布了新的文献求助10
27秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689