Pneumonia Detection Using Enhanced Convolutional Neural Network Model on Chest X-Ray Images

卷积神经网络 深度学习 计算机科学 接收机工作特性 数据集 肺炎 人工智能 试验装置 集合(抽象数据类型) 训练集 学习迁移 F1得分 模式识别(心理学) 机器学习 医学 内科学 程序设计语言
作者
Shadi Aljawarneh,Romesaa Al-Quraan
出处
期刊:Big data [Mary Ann Liebert]
被引量:19
标识
DOI:10.1089/big.2022.0261
摘要

Pneumonia, caused by microorganisms, is a severely contagious disease that damages one or both the lungs of the patients. Early detection and treatment are typically favored to recover infected patients since untreated pneumonia can lead to major complications in the elderly (>65 years) and children (<5 years). The objectives of this work are to develop several models to evaluate big X-ray images (XRIs) of the chest, to determine whether the images show/do not show signs of pneumonia, and to compare the models based on their accuracy, precision, recall, loss, and receiver operating characteristic area under the ROC curve scores. Enhanced convolutional neural network (CNN), VGG-19, ResNet-50, and ResNet-50 with fine-tuning are some of the deep learning (DL) algorithms employed in this study. By training the transfer learning model and enhanced CNN model using a big data set, these techniques are used to identify pneumonia. The data set for the study was obtained from Kaggle. It should be noted that the data set has been expanded to include further records. This data set included 5863 chest XRIs, which were categorized into 3 different folders (i.e., train, val, test). These data are produced every day from personnel records and Internet of Medical Things devices. According to the experimental findings, the ResNet-50 model showed the lowest accuracy, that is, 82.8%, while the enhanced CNN model showed the highest accuracy of 92.4%. Owing to its high accuracy, enhanced CNN was regarded as the best model in this study. The techniques developed in this study outperformed the popular ensemble techniques, and the models showed better results than those generated by cutting-edge methods. Our study implication is that a DL models can detect the progression of pneumonia, which improves the general diagnostic accuracy and gives patients new hope for speedy treatment. Since enhanced CNN and ResNet-50 showed the highest accuracy compared with other algorithms, it was concluded that these techniques could be effectively used to identify pneumonia after performing fine-tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
li发布了新的文献求助10
1秒前
悦耳的乐松完成签到,获得积分10
1秒前
桃子清乌龙完成签到,获得积分10
1秒前
ZhuJY完成签到,获得积分10
1秒前
Angleli完成签到,获得积分10
1秒前
平常的问雁完成签到 ,获得积分10
2秒前
小桃子完成签到 ,获得积分10
2秒前
Bonnie87完成签到,获得积分10
2秒前
大方小松完成签到,获得积分10
3秒前
LDoll发布了新的文献求助30
3秒前
agleam完成签到,获得积分10
4秒前
4秒前
温水完成签到 ,获得积分10
4秒前
丘比特应助苏子岚采纳,获得10
4秒前
牛油果完成签到,获得积分10
4秒前
大方听白完成签到 ,获得积分10
5秒前
5秒前
鹏飞完成签到,获得积分10
5秒前
文文完成签到,获得积分10
5秒前
lwydxb12138完成签到,获得积分10
5秒前
聪明的砖头完成签到,获得积分10
5秒前
无糖零脂完成签到,获得积分10
6秒前
7秒前
赵成龙完成签到,获得积分10
7秒前
7秒前
情怀应助Bonnie87采纳,获得10
7秒前
Leo完成签到,获得积分10
7秒前
flysky120完成签到,获得积分10
7秒前
8秒前
8秒前
艾瑞克完成签到,获得积分10
9秒前
我是老大应助kk采纳,获得10
9秒前
lijiajun完成签到,获得积分10
9秒前
动物园园主完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
慌慌完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433116
求助须知:如何正确求助?哪些是违规求助? 4545620
关于积分的说明 14197160
捐赠科研通 4465227
什么是DOI,文献DOI怎么找? 2447494
邀请新用户注册赠送积分活动 1438664
关于科研通互助平台的介绍 1415645