亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pneumonia Detection Using Enhanced Convolutional Neural Network Model on Chest X-Ray Images

卷积神经网络 深度学习 计算机科学 接收机工作特性 数据集 肺炎 人工智能 试验装置 集合(抽象数据类型) 训练集 学习迁移 F1得分 模式识别(心理学) 机器学习 医学 内科学 程序设计语言
作者
Shadi Aljawarneh,Romesaa Al-Quraan
出处
期刊:Big data [Mary Ann Liebert]
被引量:6
标识
DOI:10.1089/big.2022.0261
摘要

Pneumonia, caused by microorganisms, is a severely contagious disease that damages one or both the lungs of the patients. Early detection and treatment are typically favored to recover infected patients since untreated pneumonia can lead to major complications in the elderly (>65 years) and children (<5 years). The objectives of this work are to develop several models to evaluate big X-ray images (XRIs) of the chest, to determine whether the images show/do not show signs of pneumonia, and to compare the models based on their accuracy, precision, recall, loss, and receiver operating characteristic area under the ROC curve scores. Enhanced convolutional neural network (CNN), VGG-19, ResNet-50, and ResNet-50 with fine-tuning are some of the deep learning (DL) algorithms employed in this study. By training the transfer learning model and enhanced CNN model using a big data set, these techniques are used to identify pneumonia. The data set for the study was obtained from Kaggle. It should be noted that the data set has been expanded to include further records. This data set included 5863 chest XRIs, which were categorized into 3 different folders (i.e., train, val, test). These data are produced every day from personnel records and Internet of Medical Things devices. According to the experimental findings, the ResNet-50 model showed the lowest accuracy, that is, 82.8%, while the enhanced CNN model showed the highest accuracy of 92.4%. Owing to its high accuracy, enhanced CNN was regarded as the best model in this study. The techniques developed in this study outperformed the popular ensemble techniques, and the models showed better results than those generated by cutting-edge methods. Our study implication is that a DL models can detect the progression of pneumonia, which improves the general diagnostic accuracy and gives patients new hope for speedy treatment. Since enhanced CNN and ResNet-50 showed the highest accuracy compared with other algorithms, it was concluded that these techniques could be effectively used to identify pneumonia after performing fine-tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助pency采纳,获得10
3秒前
wbs13521完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
寻道图强应助科研通管家采纳,获得30
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
科研通AI2S应助Lionnn采纳,获得10
13秒前
16秒前
16秒前
哎健身完成签到 ,获得积分10
21秒前
李小猫发布了新的文献求助10
22秒前
24秒前
不鸭完成签到 ,获得积分10
24秒前
26秒前
慢跑跑不动的肥仔完成签到,获得积分10
27秒前
vidgers完成签到 ,获得积分10
30秒前
30秒前
40秒前
难过的钥匙完成签到 ,获得积分10
43秒前
Chamsel完成签到,获得积分10
44秒前
酷波er应助暴躁的听枫采纳,获得10
44秒前
眼睛大的尔竹完成签到 ,获得积分10
52秒前
53秒前
沉静盼易发布了新的文献求助10
53秒前
55秒前
xiaixax发布了新的文献求助10
57秒前
深情安青应助陈春丽采纳,获得10
1分钟前
zhouzhou发布了新的文献求助20
1分钟前
聪明勇敢有力气完成签到 ,获得积分10
1分钟前
1分钟前
陈春丽发布了新的文献求助10
1分钟前
linn完成签到 ,获得积分10
1分钟前
沉静盼易发布了新的文献求助10
1分钟前
英姑应助zackcai采纳,获得10
1分钟前
烟花应助葭月十七采纳,获得10
1分钟前
1分钟前
1分钟前
葭月十七发布了新的文献求助10
1分钟前
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248675
求助须知:如何正确求助?哪些是违规求助? 2892114
关于积分的说明 8269934
捐赠科研通 2560255
什么是DOI,文献DOI怎么找? 1388945
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627810