Artificial Intelligence for the Characterization of Pulmonary Nodules, Lung Tumors and Mediastinal Nodes on PET/CT

医学 肺癌 放射科 病理
作者
Marie Manon Krebs Krarup,Georgios Krokos,Manil Subesinghe,Arjun Nair,Barbara M. Fischer
出处
期刊:Seminars in Nuclear Medicine [Elsevier BV]
卷期号:51 (2): 143-156 被引量:25
标识
DOI:10.1053/j.semnuclmed.2020.09.001
摘要

Lung cancer is the leading cause of cancer related death around the world although early diagnosis remains vital to enabling access to curative treatment options. This article briefly describes the current role of imaging, in particular 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET/CT, in lung cancer and specifically the role of artificial intelligence with CT followed by a detailed review of the published studies applying artificial intelligence (ie, machine learning and deep learning), on FDG PET or combined PET/CT images with the purpose of early detection and diagnosis of pulmonary nodules, and characterization of lung tumors and mediastinal lymph nodes. A comprehensive search was performed on Pubmed, Embase, and clinical trial databases. The studies were analyzed with a modified version of the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction model Risk Of Bias Assessment Tool (PROBAST) statement. The search resulted in 361 studies; of these 29 were included; all retrospective; none were clinical trials. Twenty-two records evaluated standard machine learning (ML) methods on imaging features (ie, support vector machine), and 7 studies evaluated new ML methods (ie, deep learning) applied directly on PET or PET/CT images. The studies mainly reported positive results regarding the use of ML methods for diagnosing pulmonary nodules, characterizing lung tumors and mediastinal lymph nodes. However, 22 of the 29 studies were lacking a relevant comparator and/or lacking independent testing of the model. Application of ML methods with feature and image input from PET/CT for diagnosing and characterizing lung cancer is a relatively young area of research with great promise. Nevertheless, current published studies are often under-powered and lacking a clinically relevant comparator and/or independent testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
从容寒凝发布了新的文献求助10
1秒前
wuqi发布了新的文献求助10
1秒前
高挑的觅风完成签到,获得积分20
1秒前
2秒前
科研通AI5应助森屿采纳,获得10
3秒前
G秋发布了新的文献求助10
4秒前
zfr662应助阿峰采纳,获得10
4秒前
4秒前
无花果应助敏感初露采纳,获得10
4秒前
5秒前
5秒前
123发布了新的文献求助10
5秒前
风和日丽完成签到,获得积分10
6秒前
那兰发布了新的文献求助10
6秒前
赘婿应助JRF采纳,获得10
6秒前
han发布了新的文献求助30
7秒前
cryscilla发布了新的文献求助10
7秒前
7秒前
耍酷的世平完成签到,获得积分10
7秒前
希望天下0贩的0应助箴言采纳,获得10
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助缓慢的驳采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
赘婿应助wuqi采纳,获得10
11秒前
隐形曼青应助楠楠采纳,获得10
11秒前
12秒前
12秒前
打打应助一骑绝尘采纳,获得10
12秒前
12秒前
林澈完成签到 ,获得积分20
12秒前
lorentzh完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744585
求助须知:如何正确求助?哪些是违规求助? 3287576
关于积分的说明 10054111
捐赠科研通 3003748
什么是DOI,文献DOI怎么找? 1649214
邀请新用户注册赠送积分活动 785129
科研通“疑难数据库(出版商)”最低求助积分说明 750947