Research on the Practical Classification and Privacy Protection of CT Images of Parotid Tumors based on ResNet50 Model

腮腺 计算机科学 集合(抽象数据类型) 深度学习 医学诊断 面神经 人工智能 模式识别(心理学) 医学 放射科 病理 程序设计语言
作者
Jiantin Yuan,Yangyang Fan,Xiaoyi Lv,Chen Chen,Debao Li,Hong Yu,Yan Wang
出处
期刊:Journal of physics [IOP Publishing]
卷期号:1576 (1): 012040-012040 被引量:9
标识
DOI:10.1088/1742-6596/1576/1/012040
摘要

Abstract Parotid gland disease is one of the main causes of facial paralysis, and parotid gland tumor is a great threat to the life of patients. The main diagnostic way of parotid diseases is imaging examination, so it is of great significance for the rapid classification of parotid image. In conclusion, 51 CT images of parotid malignant tumors and 101 CT images of parotid pleomorphic adenomas are selected as the research data set, and an intelligent and efficient machine learning algorithm is proposed for the practical classification of parotid images. At the same time, this paper also explores the privacy protection of medical images. Based on the advantages of deep learning, such as no feature engineering, strong adaptability and easy conversion, ResNet50 model in deep learning is selected as the basic network framework to achieve the purpose of rapid classification of parotid CT images. This is the first time that ResNet50 classification algorithm is applied to the practical classification of parotid tumor CT images. The results show that the accuracy of the test set converges to 90% when the model is iterated 1000 times, which also proves that this study has certain practical significance and application value for the auxiliary diagnosis of parotid gland tumor and other head and neck tumors. Simultaneously, this paper also explores the application of desensitization strategy in CT images of parotid tumors, which improves the performance of the model and also greatly protects the privacy of patients, and has a good application prospect in medical big data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助生动的如花采纳,获得20
刚刚
wzx发布了新的文献求助10
刚刚
隐形曼青应助兔子采纳,获得10
1秒前
脑洞疼应助王倩采纳,获得10
1秒前
乐乐应助默默采纳,获得10
1秒前
我是老大应助Tsct采纳,获得10
1秒前
奶茶给我一口完成签到,获得积分10
1秒前
小胡同学完成签到,获得积分10
2秒前
2秒前
曹兰萍发布了新的文献求助10
2秒前
思源应助cdbb采纳,获得10
3秒前
3秒前
刘霁葳完成签到,获得积分10
3秒前
xiayu完成签到,获得积分10
3秒前
4秒前
xiaojing完成签到,获得积分10
4秒前
老迟到的定帮完成签到,获得积分10
4秒前
小汁儿发布了新的文献求助10
4秒前
暴躁的夏烟应助愉快广缘采纳,获得10
5秒前
Leon发布了新的文献求助10
5秒前
絵空事完成签到,获得积分10
6秒前
FashionBoy应助zm采纳,获得10
6秒前
梦汐moxi完成签到,获得积分20
6秒前
7秒前
hch完成签到,获得积分20
7秒前
7秒前
猪猪hero应助客服小祥采纳,获得10
7秒前
8秒前
8秒前
小蘑菇应助犹豫的世倌采纳,获得10
8秒前
倩倩完成签到 ,获得积分10
8秒前
8秒前
务实的以松完成签到,获得积分10
9秒前
大模型应助积极紫翠采纳,获得10
9秒前
梅竹发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
小可爱完成签到,获得积分10
10秒前
zhuang发布了新的文献求助30
10秒前
xiayu发布了新的文献求助20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603