Research on the Practical Classification and Privacy Protection of CT Images of Parotid Tumors based on ResNet50 Model

腮腺 计算机科学 集合(抽象数据类型) 深度学习 医学诊断 面神经 人工智能 模式识别(心理学) 医学 放射科 病理 程序设计语言
作者
Jiantin Yuan,Yangyang Fan,Xiaoyi Lv,Chen Chen,Debao Li,Hong Yu,Yan Wang
出处
期刊:Journal of physics [IOP Publishing]
卷期号:1576 (1): 012040-012040 被引量:9
标识
DOI:10.1088/1742-6596/1576/1/012040
摘要

Abstract Parotid gland disease is one of the main causes of facial paralysis, and parotid gland tumor is a great threat to the life of patients. The main diagnostic way of parotid diseases is imaging examination, so it is of great significance for the rapid classification of parotid image. In conclusion, 51 CT images of parotid malignant tumors and 101 CT images of parotid pleomorphic adenomas are selected as the research data set, and an intelligent and efficient machine learning algorithm is proposed for the practical classification of parotid images. At the same time, this paper also explores the privacy protection of medical images. Based on the advantages of deep learning, such as no feature engineering, strong adaptability and easy conversion, ResNet50 model in deep learning is selected as the basic network framework to achieve the purpose of rapid classification of parotid CT images. This is the first time that ResNet50 classification algorithm is applied to the practical classification of parotid tumor CT images. The results show that the accuracy of the test set converges to 90% when the model is iterated 1000 times, which also proves that this study has certain practical significance and application value for the auxiliary diagnosis of parotid gland tumor and other head and neck tumors. Simultaneously, this paper also explores the application of desensitization strategy in CT images of parotid tumors, which improves the performance of the model and also greatly protects the privacy of patients, and has a good application prospect in medical big data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的绝悟完成签到,获得积分10
1秒前
1秒前
logen完成签到,获得积分10
1秒前
Hetty完成签到,获得积分10
1秒前
QIZH发布了新的文献求助10
2秒前
可爱的函函应助不是细菌采纳,获得10
2秒前
Tk完成签到,获得积分10
2秒前
2秒前
研友_LN7bvn完成签到,获得积分10
2秒前
O泡发布了新的文献求助10
2秒前
文静雨兰发布了新的文献求助10
3秒前
木木完成签到,获得积分10
4秒前
小吃完成签到,获得积分10
4秒前
4秒前
无花果应助ruogu7采纳,获得10
4秒前
4秒前
调皮的败应助jiangmax采纳,获得10
4秒前
5秒前
QingS应助lichaofan采纳,获得10
5秒前
dx3906发布了新的文献求助10
5秒前
5秒前
smottom应助莫默采纳,获得10
5秒前
合适的天完成签到,获得积分10
7秒前
FashionBoy应助lxl采纳,获得10
7秒前
张张完成签到,获得积分20
7秒前
brd完成签到,获得积分10
8秒前
8秒前
esbd发布了新的文献求助10
9秒前
李爱国应助优美糖豆采纳,获得10
9秒前
ckj完成签到,获得积分10
9秒前
jdndbd关注了科研通微信公众号
9秒前
搜集达人应助范范采纳,获得30
9秒前
sln发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
桐桐应助张张采纳,获得10
11秒前
QDDYR完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851