Research on the Practical Classification and Privacy Protection of CT Images of Parotid Tumors based on ResNet50 Model

腮腺 计算机科学 集合(抽象数据类型) 深度学习 医学诊断 面神经 人工智能 模式识别(心理学) 医学 放射科 病理 程序设计语言
作者
Jiantin Yuan,Yangyang Fan,Xiaoyi Lv,Chen Chen,Debao Li,Hong Yu,Yan Wang
出处
期刊:Journal of physics [IOP Publishing]
卷期号:1576 (1): 012040-012040 被引量:9
标识
DOI:10.1088/1742-6596/1576/1/012040
摘要

Abstract Parotid gland disease is one of the main causes of facial paralysis, and parotid gland tumor is a great threat to the life of patients. The main diagnostic way of parotid diseases is imaging examination, so it is of great significance for the rapid classification of parotid image. In conclusion, 51 CT images of parotid malignant tumors and 101 CT images of parotid pleomorphic adenomas are selected as the research data set, and an intelligent and efficient machine learning algorithm is proposed for the practical classification of parotid images. At the same time, this paper also explores the privacy protection of medical images. Based on the advantages of deep learning, such as no feature engineering, strong adaptability and easy conversion, ResNet50 model in deep learning is selected as the basic network framework to achieve the purpose of rapid classification of parotid CT images. This is the first time that ResNet50 classification algorithm is applied to the practical classification of parotid tumor CT images. The results show that the accuracy of the test set converges to 90% when the model is iterated 1000 times, which also proves that this study has certain practical significance and application value for the auxiliary diagnosis of parotid gland tumor and other head and neck tumors. Simultaneously, this paper also explores the application of desensitization strategy in CT images of parotid tumors, which improves the performance of the model and also greatly protects the privacy of patients, and has a good application prospect in medical big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxl要顺利毕业_发6篇C完成签到,获得积分10
1秒前
林结衣完成签到,获得积分10
2秒前
完美世界应助热情大树采纳,获得10
3秒前
yyy完成签到 ,获得积分10
3秒前
4秒前
lmg发布了新的文献求助10
4秒前
SYLH应助cc采纳,获得10
4秒前
梦想完成签到,获得积分20
5秒前
5秒前
qq158014169完成签到 ,获得积分10
5秒前
5秒前
深情安青应助DamenS采纳,获得10
5秒前
我是老大应助DamenS采纳,获得10
6秒前
Ava应助DamenS采纳,获得10
6秒前
orixero应助DamenS采纳,获得10
6秒前
思源应助DamenS采纳,获得10
6秒前
fan完成签到,获得积分10
7秒前
打打应助小杨采纳,获得10
7秒前
zokor完成签到 ,获得积分0
8秒前
九龙飞翔完成签到,获得积分10
9秒前
yookia应助koukou采纳,获得10
9秒前
9秒前
lh发布了新的文献求助10
11秒前
阳光的雁易完成签到,获得积分10
12秒前
研友_VZG7GZ应助DamenS采纳,获得10
13秒前
CodeCraft应助DamenS采纳,获得10
13秒前
万能图书馆应助DamenS采纳,获得10
13秒前
慕青应助DamenS采纳,获得10
13秒前
顾矜应助DamenS采纳,获得10
13秒前
慕青应助DamenS采纳,获得10
13秒前
脑洞疼应助DamenS采纳,获得10
13秒前
Jasper应助DamenS采纳,获得10
13秒前
共享精神应助DamenS采纳,获得10
13秒前
wanci应助DamenS采纳,获得10
13秒前
GGGG发布了新的文献求助20
14秒前
15秒前
共享精神应助Baihanyu采纳,获得10
15秒前
忧郁豆芽发布了新的文献求助10
16秒前
17秒前
小萝卜完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651