Research on the Practical Classification and Privacy Protection of CT Images of Parotid Tumors based on ResNet50 Model

腮腺 计算机科学 集合(抽象数据类型) 深度学习 医学诊断 面神经 人工智能 模式识别(心理学) 医学 放射科 病理 程序设计语言
作者
Jiantin Yuan,Yangyang Fan,Xiaoyi Lv,Chen Chen,Debao Li,Hong Yu,Yan Wang
出处
期刊:Journal of physics [IOP Publishing]
卷期号:1576 (1): 012040-012040 被引量:9
标识
DOI:10.1088/1742-6596/1576/1/012040
摘要

Abstract Parotid gland disease is one of the main causes of facial paralysis, and parotid gland tumor is a great threat to the life of patients. The main diagnostic way of parotid diseases is imaging examination, so it is of great significance for the rapid classification of parotid image. In conclusion, 51 CT images of parotid malignant tumors and 101 CT images of parotid pleomorphic adenomas are selected as the research data set, and an intelligent and efficient machine learning algorithm is proposed for the practical classification of parotid images. At the same time, this paper also explores the privacy protection of medical images. Based on the advantages of deep learning, such as no feature engineering, strong adaptability and easy conversion, ResNet50 model in deep learning is selected as the basic network framework to achieve the purpose of rapid classification of parotid CT images. This is the first time that ResNet50 classification algorithm is applied to the practical classification of parotid tumor CT images. The results show that the accuracy of the test set converges to 90% when the model is iterated 1000 times, which also proves that this study has certain practical significance and application value for the auxiliary diagnosis of parotid gland tumor and other head and neck tumors. Simultaneously, this paper also explores the application of desensitization strategy in CT images of parotid tumors, which improves the performance of the model and also greatly protects the privacy of patients, and has a good application prospect in medical big data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheng发布了新的文献求助10
刚刚
bling发布了新的文献求助10
刚刚
何小芳完成签到,获得积分10
刚刚
HHH发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
今后应助微笑无敌瑶采纳,获得10
2秒前
2秒前
酷钱完成签到 ,获得积分10
2秒前
FashionBoy应助zyyy采纳,获得10
2秒前
昼夜本色发布了新的文献求助10
2秒前
李健的小迷弟应助药小博采纳,获得10
2秒前
彭于晏应助清晨杨采纳,获得10
2秒前
3秒前
3秒前
丘比特应助轻松囧采纳,获得10
3秒前
火速上前线完成签到,获得积分10
3秒前
seed85发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
龟龟发布了新的文献求助10
5秒前
even应助文件撤销了驳回
6秒前
osneiogn完成签到,获得积分10
6秒前
6秒前
爱吃饼干的土拨鼠完成签到,获得积分10
6秒前
6秒前
VC发布了新的文献求助10
7秒前
香蕉觅云应助温暖的鸿采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
甜美静白完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助Savannah采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
bling完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807