亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

General risk measures for robust machine learning

数学优化 模棱两可 正多边形 缩小 公制(单位) 计算机科学 凸优化 最优化问题 功能(生物学) 数学 算法 人工智能 程序设计语言 运营管理 几何学 经济 进化生物学 生物
作者
Émilie Chouzenoux,Henri Gérard,Jean‐Christophe Pesquet
出处
期刊:Foundations of data science [American Institute of Mathematical Sciences]
卷期号:1 (3): 249-269 被引量:4
标识
DOI:10.3934/fods.2019011
摘要

A wide array of machine learning problems are formulated as the minimization of the expectation of a convex loss function on some parameter space. Since the probability distribution of the data of interest is usually unknown, it is is often estimated from training sets, which may lead to poor out-of-sample performance. In this work, we bring new insights in this problem by using the framework which has been developed in quantitative finance for risk measures. We show that the original min-max problem can be recast as a convex minimization problem under suitable assumptions. We discuss several important examples of robust formulations, in particular by defining ambiguity sets based on $ \varphi $-divergences and the Wasserstein metric. We also propose an efficient algorithm for solving the corresponding convex optimization problems involving complex convex constraints. Through simulation examples, we demonstrate that this algorithm scales well on real data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
6秒前
11秒前
shinn发布了新的文献求助10
13秒前
思柔完成签到,获得积分10
15秒前
17秒前
shinn发布了新的文献求助10
17秒前
坚守完成签到 ,获得积分10
23秒前
yjr发布了新的文献求助10
23秒前
24秒前
搞怪的白云完成签到 ,获得积分10
25秒前
江江江完成签到,获得积分20
26秒前
29秒前
33秒前
瑕不掩瑜发布了新的文献求助10
33秒前
英姑应助吉吉采纳,获得10
35秒前
37秒前
莫愁完成签到 ,获得积分10
39秒前
充电宝应助shinn采纳,获得10
41秒前
42秒前
46秒前
47秒前
Owen应助发发采纳,获得30
47秒前
55秒前
瑕不掩瑜完成签到,获得积分10
57秒前
石榴汁的书完成签到,获得积分10
1分钟前
1分钟前
qzp完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
寻道图强举报spring求助涉嫌违规
1分钟前
shinn发布了新的文献求助10
1分钟前
1分钟前
带刺的玫瑰李博应助CGDGD采纳,获得10
1分钟前
顾矜应助宇宙超人007008采纳,获得10
1分钟前
科研通AI2S应助shinn采纳,获得10
1分钟前
1分钟前
安静严青完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112