Enhancing the electronic and phonon transport properties of two-dimensional hexagonal boron nitride through oxygenation: A first principles study

材料科学 热导率 声子 热电效应 密度泛函理论 氮化硼 凝聚态物理 纳米技术 热力学 计算化学 化学 复合材料 物理
作者
Basant Roondhe,Vaishali Sharma,Hardik L. Kagdada,Dheeraj K. Singh,Tanusri Saha Dasgupta,Rajeev Ahuja
出处
期刊:Applied Surface Science [Elsevier]
卷期号:533: 147513-147513 被引量:15
标识
DOI:10.1016/j.apsusc.2020.147513
摘要

Thermoelectric (TE) materials have gathered much attention due to their ability to harvest waste heat energy. To fulfill the goal of sufficient efficiency conversion two important parameters are required (1) low thermal conductivity and (2) high power factor (PF). Two dimensional (2D) hexagonal boron nitride (h-BN) is isostructural with graphene and composed of excellent opto-electronic properties, high mechanical and chemical stability, further exhibiting wide range of applications in diverse areas. Insulating nature of 2D h-BN can be tuned by different approaches such as functionalization, doping or hybrid structures. Therefore, present work focuses on the oxygenation of h-BN, i.e. BNO, for optimization of electronic and phonon transport properties using the state-of-the-art density functional theory (DFT) and Boltzmann transport equation. The presence of oxygen in out-of-plane direction leads to the buckling in h-BN resulting in 65% decrement in the lattice thermal conductivity of BNO (103.66 W/mK) at room temperature. Further, the giant reduction (from 4.63 to 0.7 eV) in electronic bandgap after oxygenation in h-BN is found, leading to the nine times larger electrical conductivity as compared to h-BN. The calculated power factor is almost double in case of BNO. Present study suggests, BNO might have promising utilization in high temperature thermoelectric applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xx发布了新的文献求助10
1秒前
2秒前
闪闪完成签到,获得积分20
2秒前
科目三应助杨佳燕采纳,获得10
2秒前
大气的以寒完成签到,获得积分10
2秒前
3秒前
淋湿巴黎完成签到,获得积分10
3秒前
3秒前
4秒前
晨曦完成签到,获得积分10
4秒前
5秒前
7分运气完成签到,获得积分10
5秒前
张三发布了新的文献求助10
6秒前
草田水完成签到,获得积分10
7秒前
CNJX完成签到,获得积分10
7秒前
7秒前
彭于晏应助tony采纳,获得10
7秒前
Wonderland发布了新的文献求助10
7秒前
xcgh应助脆皮小小酥采纳,获得20
8秒前
燕子发布了新的文献求助30
8秒前
8秒前
9秒前
10秒前
11秒前
欢欢发布了新的文献求助10
11秒前
12秒前
13秒前
木木完成签到,获得积分10
13秒前
科研通AI6应助Amagi采纳,获得10
13秒前
所所应助自信的诗霜采纳,获得10
14秒前
15秒前
Yanglk发布了新的文献求助10
15秒前
15秒前
jiangqingquan发布了新的文献求助10
15秒前
jinyu完成签到,获得积分10
15秒前
15秒前
我是老大应助嘉平三十采纳,获得10
15秒前
01231009yrjz完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285417
求助须知:如何正确求助?哪些是违规求助? 4438512
关于积分的说明 13817541
捐赠科研通 4319833
什么是DOI,文献DOI怎么找? 2371192
邀请新用户注册赠送积分活动 1366728
关于科研通互助平台的介绍 1330185