质子
化学工程
材料科学
化学
化学物理
物理
工程类
核物理学
作者
Xinyou Ma,Chenghan Li,Alex B. F. Martinson,Gregory A. Voth
标识
DOI:10.1021/acs.jpcc.0c04493
摘要
Hydrated excess protons under hydrophobic confinement are a critical component of charge transport behavior and reactivity in nanoporous materials and biomolecular systems. Herein, excess proton confinement effects are computationally investigated for sub-2 nm hydrophobic nanopores by varying the diameters (d = 0.81, 0.95, 1.09, 1.22, 1.36, 1.63, and 1.90 nm), lengths (l ∼3 and ∼5 nm), curvature, and chirality of cylindrical carbon nanotube (CNT) nanopores. CNTs with a combination of different diameter segments are also explored. The spatial distribution of water molecules under confinement is diameter-dependent; however, proton solvation and transport are consistently found to occur in the water layer adjacent to the pore wall, showing an "amphiphilic" character of the hydrated excess proton hydronium-like structure. The proton transport free energy barrier also decreases significantly as the nanopore diameter increases and proton transport becomes almost barrierless in the d > 1 nm nanopores. Among the nanopores studied, the Zundel cation (H5O2+) is populated only in the d = 0.95 nm CNT (7,7) nanopore. The presence of the hydrated excess proton and K+ inside the CNT (7,7) nanopore induces a water density increase by 40 and 20%, respectively. The K+ transport through CNT nanopores is also consistently higher in the free energy barrier than proton transport. Interestingly, the evolution of excess protonic charge defect distribution reveals a "frozen" single water wire configuration in the d = 0.81 nm CNT (6,6) nanopore (or segment), through which hydrated excess protons can only shuttle via the Grotthuss mechanism. Vehicular diffusion becomes relevant to proton transport in the "flat" free energy regions and in the wider nanopores, where protons do not primarily shuttle in the axial direction.
科研通智能强力驱动
Strongly Powered by AbleSci AI