亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for clinical decision support in infectious diseases: a narrative review of current applications

抗菌管理 临床决策支持系统 梅德林 叙述性评论 重症监护医学 医学 败血症 养生 决策支持系统 机器学习 抗生素耐药性 人工智能 计算机科学 抗生素 内科学 法学 微生物学 生物 政治学
作者
Nathan Peiffer‐Smadja,Timothy M. Rawson,Raheelah Ahmad,Albert Buchard,Pantelis Georgiou,François-Xavier Lescure,Gabriel Birgand,Alison Holmes
出处
期刊:Clinical Microbiology and Infection [Elsevier]
卷期号:26 (5): 584-595 被引量:367
标识
DOI:10.1016/j.cmi.2019.09.009
摘要

Abstract Background Machine learning (ML) is a growing field in medicine. This narrative review describes the current body of literature on ML for clinical decision support in infectious diseases (ID). Objectives We aim to inform clinicians about the use of ML for diagnosis, classification, outcome prediction and antimicrobial management in ID. Sources References for this review were identified through searches of MEDLINE/PubMed, EMBASE, Google Scholar, biorXiv, ACM Digital Library, arXiV and IEEE Xplore Digital Library up to July 2019. Content We found 60 unique ML-clinical decision support systems (ML-CDSS) aiming to assist ID clinicians. Overall, 37 (62%) focused on bacterial infections, 10 (17%) on viral infections, nine (15%) on tuberculosis and four (7%) on any kind of infection. Among them, 20 (33%) addressed the diagnosis of infection, 18 (30%) the prediction, early detection or stratification of sepsis, 13 (22%) the prediction of treatment response, four (7%) the prediction of antibiotic resistance, three (5%) the choice of antibiotic regimen and two (3%) the choice of a combination antiretroviral therapy. The ML-CDSS were developed for intensive care units (n = 24, 40%), ID consultation (n = 15, 25%), medical or surgical wards (n = 13, 20%), emergency department (n = 4, 7%), primary care (n = 3, 5%) and antimicrobial stewardship (n = 1, 2%). Fifty-three ML-CDSS (88%) were developed using data from high-income countries and seven (12%) with data from low- and middle-income countries (LMIC). The evaluation of ML-CDSS was limited to measures of performance (e.g. sensitivity, specificity) for 57 ML-CDSS (95%) and included data in clinical practice for three (5%). Implications Considering comprehensive patient data from socioeconomically diverse healthcare settings, including primary care and LMICs, may improve the ability of ML-CDSS to suggest decisions adapted to various clinical contexts. Currents gaps identified in the evaluation of ML-CDSS must also be addressed in order to know the potential impact of such tools for clinicians and patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iShine完成签到 ,获得积分10
2秒前
龍一应助阿柴采纳,获得10
3秒前
14秒前
53秒前
wodetaiyangLLL完成签到 ,获得积分10
55秒前
Dester发布了新的文献求助10
57秒前
爆米花应助啦咯哦哦采纳,获得10
1分钟前
SC完成签到,获得积分10
1分钟前
归尘举报欢欢求助涉嫌违规
1分钟前
Dester完成签到,获得积分10
1分钟前
1分钟前
啦咯哦哦发布了新的文献求助10
1分钟前
SciGPT应助啦咯哦哦采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
YifanWang给叶子的求助进行了留言
2分钟前
lixiniverson完成签到 ,获得积分10
2分钟前
神勇的蛋挞完成签到,获得积分10
3分钟前
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
7NEF发布了新的文献求助10
4分钟前
归尘给Edison的求助进行了留言
4分钟前
YifanWang完成签到,获得积分0
4分钟前
Vvvkkk发布了新的文献求助30
4分钟前
李健应助jianwuzhou采纳,获得10
4分钟前
4分钟前
wcc发布了新的文献求助10
5分钟前
chiazy完成签到 ,获得积分10
5分钟前
wcc完成签到,获得积分20
5分钟前
5分钟前
星火完成签到,获得积分20
5分钟前
星火发布了新的文献求助10
5分钟前
5分钟前
5分钟前
jianwuzhou发布了新的文献求助10
5分钟前
5分钟前
在水一方应助jianwuzhou采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067260
捐赠科研通 2750124
什么是DOI,文献DOI怎么找? 1509045
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896