清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy

阿卡克信息准则 接收机工作特性 队列 医学 终末期肾病 平均绝对百分比误差 肾脏疾病 人工神经网络 回归 统计 肾病 判别式 均方误差 内科学 数学 人工智能 计算机科学 内分泌学 糖尿病
作者
Francesco Paolo Schena,Vito Walter Anelli,Joseph Trotta,Tommaso Di Noia,Carlo Manno,Giovanni Tripepi,Graziella D’Arrigo,Nicholas C. Chesnaye,María Luisa Russo,Μaria Stangou,Αikaterini Papagianni,Carmine Zoccali,Vladimı́r Tesař,Rosanna Coppo,Vladimı́r Tesař,Dita Maixnerová,Sigrid Lundberg,Loreto Gesualdo,Francesco Emma,Laura Fuiano,G. Beltrame,Cristiana Rollino,Rosanna Coppo,Alessandro Amore,Roberta Camilla,Licia Peruzzi,Manuel Praga,Sandro Feriozzi,Rosaria Polci,Giuseppe Segoloni,Loredana Colla,Antonello Pani,Andrea Angioi,Lisa Adele Piras,John Feehally,Giovanni Cancarini,S. Ravera,Magdalena Durlik,Elisabetta Moggia,José Ballarín,S. Di Giulio,Francesco Pugliese,I. Serriello,Yaşar Çalışkan,Mehmet Şükrü Sever,İşın Kiliçaslan,Francesco Locatelli,Lucia Del Vecchio,J F M Wetzels,Harm Peters,U. Berg,Fernanda Carvalho,A.C. da Costa Ferreira,M. Maggio,Andrzej Więcek,Mai Ots-Rosenberg,Riccardo Magistroni,Rezan Topaloğlu,Yelda Bilginer,Marco DʼAmico,Μaria Stangou,F Giacchino,D. Goumenos,Marios Papasotiriou,Kres̆imir Gales̃ić,Luka Torić,Colin Geddes,Kostas C. Siamopoulos,Olga Balafa,Marco Galliani,Piero Stratta,Marco Quaglia,R Bergia,Raffaella Cravero,Maurizio Salvadori,Lino Cirami,Bengt Fellström,Hilde Kloster Smerud,Franco Ferrario,T. Stellato,Jesüs Egido,Carina Aguilar Martín,Jürgen Floege,Frank Eitner,Thomas Rauen,Antonio Lupo,Patrizia Bernich,Paolo Menè,Massimo Morosetti,Cees van Kooten,Ton J. Rabelink,Marlies E. J. Reinders,J.M. Boria Grinyo,Stefano Cusinato,Luisa Benozzi,Silvana Savoldi,C. Licata,Małgorzata Mizerska-Wasiak,Maria Roszkowska–Blaim,G Martina,A Messuerotti,Antonio Dal Canton,Ciro Esposito,C. Migotto,G Triolo,Filippo Mariano,Claudio Pozzi,R Boero,Mazzucco,C. Giannakakis,Eva Honsová,B. Sundelin,Anna Maria Di Palma,Franco Ferrario,Ester Gutiérrez Moya,A.M. Asunis,Jonathan Barratt,Regina Tardanico,Agnieszka Perkowska‐Ptasińska,J. Arce Terroba,M. Fortunato,Afroditi Pantzaki,Yasemin Özlük,E. J. Steenbergen,Magnus Söderberg,Z. Riispere,Luciana Furci,Dıclehan Orhan,David Kipgen,Donatella Casartelli,Danica Galešić Ljubanović,Hariklia Gakiopoulou,E. Bertoni,Pablo Cannata Ortiz,Henryk Karkoszka,Hermann-Josef Groene,Antonella Stoppacciaro,Ingeborg M. Bajema,Jan A. Bruijn,X. FulladosaOliveras,Jadwiga Małdyk,E. Ioachim,Daniela Isabel Abbrescia,Nikoleta M. Kouri,Μaria Stangou,Αikaterini Papagianni,Francesco Scolari,Elisa Delbarba,Mario Bonomini,Luca Piscitani,Giovanni Stallone,Barbara Infante,Giulia Godeas,Desirèe Madio,Luigi Biancone,Marco Campagna,Gianluigi Zaza,Isabella Squarzoni,Concetta Cangemi
出处
期刊:Kidney International [Elsevier]
卷期号:99 (5): 1179-1188 被引量:66
标识
DOI:10.1016/j.kint.2020.07.046
摘要

We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowuge完成签到 ,获得积分10
9秒前
16秒前
飞鱼完成签到 ,获得积分10
19秒前
xun发布了新的文献求助10
21秒前
陆黑暗完成签到 ,获得积分10
21秒前
煜琪完成签到 ,获得积分10
34秒前
安安完成签到 ,获得积分10
37秒前
su完成签到 ,获得积分10
45秒前
先吃一只羊完成签到 ,获得积分10
53秒前
浮云完成签到 ,获得积分10
54秒前
yue完成签到,获得积分10
55秒前
Yimi刘博完成签到 ,获得积分10
1分钟前
深情的凝云完成签到 ,获得积分10
1分钟前
大头完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
季末默相依完成签到,获得积分10
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
明亮萤完成签到 ,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
2分钟前
好名字完成签到,获得积分10
2分钟前
mictime完成签到,获得积分10
2分钟前
Eri_SCI完成签到 ,获得积分10
2分钟前
gobi完成签到 ,获得积分10
3分钟前
迅速的幻雪完成签到 ,获得积分10
3分钟前
小朱完成签到 ,获得积分10
3分钟前
左丘映易完成签到,获得积分0
3分钟前
3分钟前
Glory完成签到 ,获得积分10
3分钟前
研友_nV2ROn完成签到,获得积分10
3分钟前
肥皂剧完成签到,获得积分10
4分钟前
拖拖完成签到 ,获得积分10
4分钟前
富贵完成签到 ,获得积分10
4分钟前
紫金之巅完成签到 ,获得积分10
4分钟前
冉亦完成签到,获得积分10
4分钟前
zenabia完成签到 ,获得积分10
4分钟前
超帅傲白完成签到 ,获得积分10
4分钟前
光亮的自行车完成签到 ,获得积分10
5分钟前
Ji完成签到,获得积分10
5分钟前
平凡世界完成签到 ,获得积分10
5分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234647
求助须知:如何正确求助?哪些是违规求助? 2880925
关于积分的说明 8217427
捐赠科研通 2548563
什么是DOI,文献DOI怎么找? 1377856
科研通“疑难数据库(出版商)”最低求助积分说明 648054
邀请新用户注册赠送积分活动 623416