已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy

阿卡克信息准则 接收机工作特性 队列 医学 终末期肾病 平均绝对百分比误差 肾脏疾病 人工神经网络 回归 统计 肾病 判别式 均方误差 内科学 数学 人工智能 计算机科学 内分泌学 糖尿病
作者
Francesco Paolo Schena,Vito Walter Anelli,Joseph Trotta,Tommaso Di Noia,Carlo Manno,Giovanni Tripepi,Graziella D’Arrigo,Nicholas C. Chesnaye,María Luisa Russo,Μaria Stangou,Αikaterini Papagianni,Carmine Zoccali,Vladimı́r Tesař,Rosanna Coppo,Vladimı́r Tesař,Dita Maixnerová,Sigrid Lundberg,Loreto Gesualdo,Francesco Emma,Laura Fuiano,G. Beltrame,Cristiana Rollino,Rosanna Coppo,Alessandro Amore,Roberta Camilla,Licia Peruzzi,Manuel Praga,Sandro Feriozzi,Rosaria Polci,Giuseppe Segoloni,Loredana Colla,Antonello Pani,Andrea Angioi,Lisa Adele Piras,John Feehally,Giovanni Cancarini,S. Ravera,Magdalena Durlik,Elisabetta Moggia,José Ballarín,S. Di Giulio,Francesco Pugliese,I. Serriello,Yaşar Çalışkan,Mehmet Şükrü Sever,İşın Kiliçaslan,Francesco Locatelli,Lucia Del Vecchio,J F M Wetzels,Harm Peters,U. Berg,Fernanda Carvalho,A.C. da Costa Ferreira,M. Maggio,Andrzej Więcek,Mai Ots-Rosenberg,Riccardo Magistroni,Rezan Topaloğlu,Yelda Bilginer,Marco DʼAmico,Μaria Stangou,F Giacchino,D. Goumenos,Marios Papasotiriou,Kres̆imir Gales̃ić,Luka Torić,Colin Geddes,Kostas C. Siamopoulos,Olga Balafa,Marco Galliani,Piero Stratta,Marco Quaglia,R Bergia,Raffaella Cravero,Maurizio Salvadori,Lino Cirami,Bengt Fellström,Hilde Kloster Smerud,Franco Ferrario,T. Stellato,Jesüs Egido,Carina Aguilar Martín,Jürgen Floege,Frank Eitner,Thomas Rauen,Antonio Lupo,Patrizia Bernich,Paolo Menè,Massimo Morosetti,Cees van Kooten,Ton J. Rabelink,Marlies E. J. Reinders,J.M. Boria Grinyo,Stefano Cusinato,Luisa Benozzi,Silvana Savoldi,C. Licata,Małgorzata Mizerska-Wasiak,Maria Roszkowska–Blaim,G Martina,A Messuerotti,Antonio Dal Canton,Ciro Esposito,C. Migotto,G Triolo,Filippo Mariano,Claudio Pozzi,R Boero,Mazzucco,C. Giannakakis,Eva Honsová,B. Sundelin,Anna Maria Di Palma,Franco Ferrario,Ester Gutiérrez Moya,A.M. Asunis,Jonathan Barratt,Regina Tardanico,Agnieszka Perkowska‐Ptasińska,J. Arce Terroba,M. Fortunato,Afroditi Pantzaki,Yasemin Özlük,E. J. Steenbergen,Magnus Söderberg,Z. Riispere,Luciana Furci,Dıclehan Orhan,David Kipgen,Donatella Casartelli,Danica Galešić Ljubanović,Hariklia Gakiopoulou,E. Bertoni,Pablo Cannata Ortiz,Henryk Karkoszka,Hermann-Josef Groene,Antonella Stoppacciaro,Ingeborg M. Bajema,Jan A. Bruijn,X. FulladosaOliveras,Jadwiga Małdyk,E. Ioachim,Daniela Isabel Abbrescia,Nikoleta M. Kouri,Μaria Stangou,Αikaterini Papagianni,Francesco Scolari,Elisa Delbarba,Mario Bonomini,Luca Piscitani,Giovanni Stallone,Barbara Infante,Giulia Godeas,Desirèe Madio,Luigi Biancone,Marco Campagna,Gianluigi Zaza,Isabella Squarzoni,Concetta Cangemi
出处
期刊:Kidney International [Elsevier]
卷期号:99 (5): 1179-1188 被引量:66
标识
DOI:10.1016/j.kint.2020.07.046
摘要

We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子完成签到,获得积分10
刚刚
拼搏耷完成签到,获得积分10
1秒前
yy发布了新的文献求助10
1秒前
情怀应助hihihi采纳,获得10
3秒前
4秒前
sxmt123456789发布了新的文献求助10
4秒前
11112321321发布了新的文献求助10
5秒前
在水一方应助小陈采纳,获得10
5秒前
8秒前
睡够了不困完成签到,获得积分10
9秒前
9秒前
10秒前
自觉雨文发布了新的文献求助20
10秒前
ZongchenYang发布了新的文献求助10
11秒前
幸运幸福完成签到,获得积分10
12秒前
柯飞扬发布了新的文献求助10
13秒前
和谐听白完成签到 ,获得积分10
13秒前
chcui发布了新的文献求助200
13秒前
14秒前
14秒前
11112321321完成签到,获得积分10
14秒前
wayne老刘完成签到,获得积分10
14秒前
15秒前
北方完成签到,获得积分10
16秒前
16秒前
善学以致用应助1234采纳,获得10
17秒前
17秒前
Nl发布了新的文献求助10
18秒前
19秒前
谨慎问雁发布了新的文献求助10
20秒前
20秒前
chumen77发布了新的文献求助30
21秒前
边雨完成签到 ,获得积分10
21秒前
从容映易完成签到,获得积分10
22秒前
在水一方应助ZongchenYang采纳,获得10
22秒前
温暖眼神完成签到,获得积分10
23秒前
柯飞扬完成签到,获得积分10
23秒前
坚强的赛凤完成签到 ,获得积分10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432080
求助须知:如何正确求助?哪些是违规求助? 4544872
关于积分的说明 14194391
捐赠科研通 4464085
什么是DOI,文献DOI怎么找? 2446962
邀请新用户注册赠送积分活动 1438286
关于科研通互助平台的介绍 1415085