清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy

阿卡克信息准则 接收机工作特性 队列 医学 终末期肾病 平均绝对百分比误差 肾脏疾病 人工神经网络 回归 统计 肾病 判别式 均方误差 内科学 数学 人工智能 计算机科学 内分泌学 糖尿病
作者
Francesco Paolo Schena,Vito Walter Anelli,Joseph Trotta,Tommaso Di Noia,Carlo Manno,Giovanni Tripepi,Graziella D’Arrigo,Nicholas C. Chesnaye,María Luisa Russo,Μaria Stangou,Αikaterini Papagianni,Carmine Zoccali,Vladimı́r Tesař,Rosanna Coppo,Vladimı́r Tesař,Dita Maixnerová,Sigrid Lundberg,Loreto Gesualdo,Francesco Emma,Laura Fuiano,G. Beltrame,Cristiana Rollino,Rosanna Coppo,Alessandro Amore,Roberta Camilla,Licia Peruzzi,Manuel Praga,Sandro Feriozzi,Rosaria Polci,Giuseppe Segoloni,Loredana Colla,Antonello Pani,Andrea Angioi,Lisa Adele Piras,John Feehally,Giovanni Cancarini,S. Ravera,Magdalena Durlik,Elisabetta Moggia,José Ballarín,S. Di Giulio,Francesco Pugliese,I. Serriello,Yaşar Çalışkan,Mehmet Şükrü Sever,İşın Kiliçaslan,Francesco Locatelli,Lucia Del Vecchio,J F M Wetzels,Harm Peters,U. Berg,Fernanda Carvalho,A.C. da Costa Ferreira,M. Maggio,Andrzej Więcek,Mai Ots-Rosenberg,Riccardo Magistroni,Rezan Topaloğlu,Yelda Bilginer,Marco DʼAmico,Μaria Stangou,F Giacchino,D. Goumenos,Marios Papasotiriou,Kres̆imir Gales̃ić,Luka Torić,Colin Geddes,Kostas C. Siamopoulos,Olga Balafa,Marco Galliani,Piero Stratta,Marco Quaglia,R Bergia,Raffaella Cravero,Maurizio Salvadori,Lino Cirami,Bengt Fellström,Hilde Kloster Smerud,Franco Ferrario,T. Stellato,Jesüs Egido,Carina Aguilar Martín,Jürgen Floege,Frank Eitner,Thomas Rauen,Antonio Lupo,Patrizia Bernich,Paolo Menè,Massimo Morosetti,Cees van Kooten,Ton J. Rabelink,Marlies E. J. Reinders,J.M. Boria Grinyo,Stefano Cusinato,Luisa Benozzi,Silvana Savoldi,C. Licata,Małgorzata Mizerska-Wasiak,Maria Roszkowska–Blaim,G Martina,A Messuerotti,Antonio Dal Canton,Ciro Esposito,C. Migotto,G Triolo,Filippo Mariano,Claudio Pozzi,R Boero,Mazzucco,C. Giannakakis,Eva Honsová,B. Sundelin,Anna Maria Di Palma,Franco Ferrario,Ester Gutiérrez Moya,A.M. Asunis,Jonathan Barratt,Regina Tardanico,Agnieszka Perkowska‐Ptasińska,J. Arce Terroba,M. Fortunato,Afroditi Pantzaki,Yasemin Özlük,E. J. Steenbergen,Magnus Söderberg,Z. Riispere,Luciana Furci,Dıclehan Orhan,David Kipgen,Donatella Casartelli,Danica Galešić Ljubanović,Hariklia Gakiopoulou,E. Bertoni,Pablo Cannata Ortiz,Henryk Karkoszka,Hermann-Josef Groene,Antonella Stoppacciaro,Ingeborg M. Bajema,Jan A. Bruijn,X. FulladosaOliveras,Jadwiga Małdyk,E. Ioachim,Daniela Isabel Abbrescia,Nikoleta M. Kouri,Μaria Stangou,Αikaterini Papagianni,Francesco Scolari,Elisa Delbarba,Mario Bonomini,Luca Piscitani,Giovanni Stallone,Barbara Infante,Giulia Godeas,Desirèe Madio,Luigi Biancone,Marco Campagna,Gianluigi Zaza,Isabella Squarzoni,Concetta Cangemi
出处
期刊:Kidney International [Elsevier]
卷期号:99 (5): 1179-1188 被引量:66
标识
DOI:10.1016/j.kint.2020.07.046
摘要

We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tingting完成签到,获得积分10
4秒前
喜喜完成签到,获得积分10
5秒前
美满惜寒完成签到,获得积分10
5秒前
洋芋饭饭完成签到,获得积分10
5秒前
yzz完成签到,获得积分10
5秒前
阳光完成签到,获得积分10
5秒前
朝夕之晖完成签到,获得积分10
5秒前
BMG完成签到,获得积分10
6秒前
runtang完成签到,获得积分10
6秒前
qq完成签到,获得积分10
6秒前
BowieHuang完成签到,获得积分0
6秒前
真的OK完成签到,获得积分0
6秒前
prrrratt完成签到,获得积分10
7秒前
CGBIO完成签到,获得积分10
7秒前
ys1008完成签到,获得积分10
7秒前
guoyufan完成签到,获得积分10
7秒前
Syan完成签到,获得积分10
8秒前
王jyk完成签到,获得积分10
8秒前
呵呵哒完成签到,获得积分10
8秒前
啪嗒大白球完成签到,获得积分10
8秒前
dx完成签到,获得积分10
9秒前
清水完成签到,获得积分10
9秒前
zwzw完成签到,获得积分10
9秒前
675完成签到,获得积分10
9秒前
大树完成签到,获得积分10
9秒前
cityhunter7777完成签到,获得积分10
10秒前
凌泉完成签到 ,获得积分10
10秒前
12秒前
哈哈哈大赞完成签到,获得积分10
13秒前
debu9完成签到,获得积分10
14秒前
16秒前
17秒前
racill完成签到 ,获得积分10
19秒前
无极微光应助科研通管家采纳,获得30
20秒前
科研通AI6应助闪闪的硬币采纳,获得10
31秒前
crazy完成签到,获得积分10
35秒前
红茸茸羊完成签到 ,获得积分0
37秒前
梦游菌完成签到 ,获得积分10
42秒前
南风完成签到 ,获得积分10
49秒前
冰河完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658317
求助须知:如何正确求助?哪些是违规求助? 4820097
关于积分的说明 15081256
捐赠科研通 4816827
什么是DOI,文献DOI怎么找? 2577721
邀请新用户注册赠送积分活动 1532572
关于科研通互助平台的介绍 1491262