Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy

阿卡克信息准则 接收机工作特性 队列 医学 终末期肾病 平均绝对百分比误差 肾脏疾病 人工神经网络 回归 统计 肾病 判别式 均方误差 内科学 数学 人工智能 计算机科学 内分泌学 糖尿病
作者
Francesco Paolo Schena,Vito Walter Anelli,Joseph Trotta,Tommaso Di Noia,Carlo Manno,Giovanni Tripepi,Graziella D’Arrigo,Nicholas C. Chesnaye,María Luisa Russo,Μaria Stangou,Αikaterini Papagianni,Carmine Zoccali,Vladimı́r Tesař,Rosanna Coppo,Vladimı́r Tesař,Dita Maixnerová,Sigrid Lundberg,Loreto Gesualdo,Francesco Emma,Laura Fuiano,G. Beltrame,Cristiana Rollino,Rosanna Coppo,Alessandro Amore,Roberta Camilla,Licia Peruzzi,Manuel Praga,Sandro Feriozzi,Rosaria Polci,Giuseppe Segoloni,Loredana Colla,Antonello Pani,Andrea Angioi,Lisa Adele Piras,John Feehally,Giovanni Cancarini,S. Ravera,Magdalena Durlik,Elisabetta Moggia,José Ballarín,S. Di Giulio,Francesco Pugliese,I. Serriello,Yaşar Çalışkan,Mehmet Şükrü Sever,İşın Kiliçaslan,Francesco Locatelli,Lucia Del Vecchio,J F M Wetzels,Harm Peters,U. Berg,Fernanda Carvalho,A.C. da Costa Ferreira,M. Maggio,Andrzej Więcek,Mai Ots-Rosenberg,Riccardo Magistroni,Rezan Topaloğlu,Yelda Bilginer,Marco DʼAmico,Μaria Stangou,F Giacchino,D. Goumenos,Marios Papasotiriou,Kres̆imir Gales̃ić,Luka Torić,Colin Geddes,Kostas C. Siamopoulos,Olga Balafa,Marco Galliani,Piero Stratta,Marco Quaglia,R Bergia,Raffaella Cravero,Maurizio Salvadori,Lino Cirami,Bengt Fellström,Hilde Kloster Smerud,Franco Ferrario,T. Stellato,Jesüs Egido,Carina Aguilar Martín,Jürgen Floege,Frank Eitner,Thomas Rauen,Antonio Lupo,Patrizia Bernich,Paolo Menè,Massimo Morosetti,Cees van Kooten,Ton J. Rabelink,Marlies E. J. Reinders,J.M. Boria Grinyo,Stefano Cusinato,Luisa Benozzi,Silvana Savoldi,C. Licata,Małgorzata Mizerska-Wasiak,Maria Roszkowska–Blaim,G Martina,A Messuerotti,Antonio Dal Canton,Ciro Esposito,C. Migotto,G Triolo,Filippo Mariano,Claudio Pozzi,R Boero,Mazzucco,C. Giannakakis,Eva Honsová,B. Sundelin,Anna Maria Di Palma,Franco Ferrario,Ester Gutiérrez Moya,A.M. Asunis,Jonathan Barratt,Regina Tardanico,Agnieszka Perkowska‐Ptasińska,J. Arce Terroba,M. Fortunato,Afroditi Pantzaki,Yasemin Özlük,E. J. Steenbergen,Magnus Söderberg,Z. Riispere,Luciana Furci,Dıclehan Orhan,David Kipgen,Donatella Casartelli,Danica Galešić Ljubanović,Hariklia Gakiopoulou,E. Bertoni,Pablo Cannata Ortiz,Henryk Karkoszka,Hermann-Josef Groene,Antonella Stoppacciaro,Ingeborg M. Bajema,Jan A. Bruijn,X. FulladosaOliveras,Jadwiga Małdyk,E. Ioachim,Daniela Isabel Abbrescia,Nikoleta M. Kouri,Μaria Stangou,Αikaterini Papagianni,Francesco Scolari,Elisa Delbarba,Mario Bonomini,Luca Piscitani,Giovanni Stallone,Barbara Infante,Giulia Godeas,Desirèe Madio,Luigi Biancone,Marco Campagna,Gianluigi Zaza,Isabella Squarzoni,Concetta Cangemi
出处
期刊:Kidney International [Elsevier BV]
卷期号:99 (5): 1179-1188 被引量:66
标识
DOI:10.1016/j.kint.2020.07.046
摘要

We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助拜拜拜采纳,获得10
1秒前
北辰星完成签到,获得积分10
1秒前
充电宝应助林夕采纳,获得50
1秒前
1秒前
2秒前
3秒前
4秒前
科研通AI2S应助FG采纳,获得10
5秒前
如风随水发布了新的文献求助10
5秒前
ZRR发布了新的文献求助10
6秒前
打打应助Helyn采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
9秒前
9秒前
10秒前
11发布了新的文献求助10
12秒前
田様应助jiejie采纳,获得10
12秒前
12秒前
13秒前
拜拜拜发布了新的文献求助10
14秒前
青年才俊发布了新的文献求助10
14秒前
情怀应助ira采纳,获得10
15秒前
CC发布了新的文献求助30
15秒前
15秒前
充电宝应助研友_nv2r4n采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
TillySss发布了新的文献求助50
18秒前
喜悦如霜完成签到 ,获得积分10
18秒前
浮游应助Hilda007采纳,获得10
20秒前
21秒前
PG发布了新的文献求助10
21秒前
22秒前
我爱螺蛳粉完成签到 ,获得积分10
23秒前
lilianan发布了新的文献求助10
23秒前
24秒前
科研通AI5应助kangzhh采纳,获得10
24秒前
11完成签到,获得积分20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075598
求助须知:如何正确求助?哪些是违规求助? 4295360
关于积分的说明 13384177
捐赠科研通 4117030
什么是DOI,文献DOI怎么找? 2254637
邀请新用户注册赠送积分活动 1259275
关于科研通互助平台的介绍 1192040