GroupRegNet: a groupwise one-shot deep learning-based 4D image registration method

计算机科学 人工智能 深度学习 推论 编码(集合论) 卷积神经网络 过程(计算) 图像配准 图像(数学) 模式识别(心理学) 计算机视觉 人工神经网络 操作系统 集合(抽象数据类型) 程序设计语言
作者
Yunlu Zhang,Xuefeng Wu,H. Michael Gach,Harold Li,Deshan Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (4): 045030-045030 被引量:30
标识
DOI:10.1088/1361-6560/abd956
摘要

Accurate deformable 4-dimensional (4D) (3-dimensional in space and time) medical images registration is essential in a variety of medical applications. Deep learning-based methods have recently gained popularity in this area for the significant lower inference time. However, they suffer from drawbacks of non-optimal accuracy and the requirement of a large amount of training data. A new method named GroupRegNet is proposed to address both limitations. The deformation fields to warp all images in the group into a common template is obtained through one-shot learning. The use of the implicit template reduces bias and accumulated error associated with the specified reference image. The one-shot learning strategy is similar to the conventional iterative optimization method but the motion model and parameters are replaced with a convolutional neural network (CNN) and the weights of the network. GroupRegNet also features a simpler network design and a more straightforward registration process, which eliminates the need to break up the input image into patches. The proposed method was quantitatively evaluated on two public respiratory-binned 4D-CT datasets. The results suggest that GroupRegNet outperforms the latest published deep learning-based methods and is comparable to the top conventional method pTVreg. To facilitate future research, the source code is available at https://github.com/vincentme/GroupRegNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助guoyanna采纳,获得10
刚刚
1秒前
myz完成签到,获得积分10
1秒前
JIAca发布了新的文献求助10
1秒前
DJ完成签到,获得积分20
2秒前
2秒前
2秒前
苹果听枫发布了新的文献求助10
2秒前
Lucas应助furin001采纳,获得10
2秒前
2秒前
科研通AI5应助Zenia采纳,获得30
3秒前
充电宝应助正直纸鹤采纳,获得10
3秒前
wowo完成签到,获得积分10
3秒前
yfh发布了新的文献求助10
4秒前
4秒前
kk完成签到,获得积分10
4秒前
段翠发布了新的文献求助10
4秒前
跳跃的岂愈完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
5秒前
稚气满满完成签到 ,获得积分10
5秒前
豆子发布了新的文献求助10
6秒前
niukaseir发布了新的文献求助20
6秒前
酷波er应助阿怪采纳,获得10
6秒前
Jasper应助甜美书瑶采纳,获得10
6秒前
6秒前
迟大猫给老白的求助进行了留言
6秒前
7秒前
SciGPT应助你们采纳,获得10
7秒前
科研通AI5应助Liu+采纳,获得10
7秒前
8秒前
8秒前
清秋夜露白完成签到,获得积分10
8秒前
汉堡包应助caixia采纳,获得10
8秒前
执着的幻竹完成签到 ,获得积分20
8秒前
汉堡包应助DJ采纳,获得10
8秒前
司藤完成签到 ,获得积分10
8秒前
善学以致用应助wxnice采纳,获得10
9秒前
10秒前
斯文的寒风应助勤奋绿旋采纳,获得20
10秒前
轻雨发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581022
求助须知:如何正确求助?哪些是违规求助? 3150661
关于积分的说明 9483675
捐赠科研通 2852321
什么是DOI,文献DOI怎么找? 1568107
邀请新用户注册赠送积分活动 734388
科研通“疑难数据库(出版商)”最低求助积分说明 720670