亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Sepsis Prediction Using Ensemble Learning With Deep Features and Artificial Features Extracted From Clinical Electronic Health Records

人工智能 机器学习 医学 试验装置 深度学习 健康档案 人工神经网络 败血症 二元分类 数据集 生命体征 电子健康档案 人口统计学的 计算机科学 支持向量机 医疗保健 内科学 外科 经济 经济增长 人口学 社会学
作者
Zhengling He,Lidong Du,Pengfei Zhang,Rongjian Zhao,Xianxiang Chen,Zhen Fang
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (12): e1337-e1342 被引量:28
标识
DOI:10.1097/ccm.0000000000004644
摘要

Objectives: Sepsis is caused by infection and subsequent overreaction of immune system and will severely threaten human life. The early prediction is important for the treatment of sepsis. This report aims to develop an early prediction method for sepsis 6 hours ahead on the basis of clinical electronic health records. Data Sources: Challenge data are released by PhysioNet/Computing in Cardiology Challenge 2019 and obtained from ICU patients in three separate hospital systems. Part of the data from two datasets, including 40,336 subjects, are publicly available, and the remaining are used as hidden test set. A normalized utility score defined by the organizing committee is used for model performance evaluation. Study Selection: The supervised machine learning is applied to tackle this challenge. Specifically, we establish the prediction model under the framework of ensemble learning by integrating the artificial features based on clinical prior knowledge of sepsis with deep features automatically extracted by long short-term memory neural network. Data Extraction: Forty clinical variables, including eight vital signs, 26 laboratory values, and six demographics, were measured and recorded once an hour for each individual, and the binary label (0 or 1) was simultaneously provided for each item. Data Synthesis: The proposed model was evaluated by 30-fold cross-validation. The sensitivity, specificity, and normalized utility score were 0.641 ± 0.022, 0.844 ± 0.007, and 0.401 ± 0.019 on publicly available datasets, respectively. The final normalized utility score our team (UCAS_DataMiner) has obtained was 0.313 on full hidden test set (0.406, 0.373, and –0.215 on test set A, B, and C, respectively). Conclusions: We realized a 6-hour ahead early-onset prediction of sepsis on the basis of clinical electronic health record by ensemble learning. The results indicated the proposed model functioned well in the early prediction of sepsis. In particular, ensemble learning had a significant ( p < 0.01) improvement than any single model in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
信陵君无忌完成签到,获得积分10
1秒前
tepqi完成签到,获得积分10
1秒前
2秒前
sxl发布了新的文献求助10
3秒前
Nick_YFWS完成签到,获得积分10
4秒前
7秒前
BetterH完成签到 ,获得积分10
7秒前
8秒前
11秒前
mdomse2109完成签到,获得积分10
11秒前
Aimeee发布了新的文献求助10
12秒前
天天快乐应助tdtk采纳,获得10
14秒前
mdomse2109发布了新的文献求助10
16秒前
李雅琳完成签到 ,获得积分10
19秒前
上官若男应助qlh采纳,获得10
19秒前
开放素完成签到 ,获得积分0
23秒前
WuFen完成签到 ,获得积分10
27秒前
36秒前
38秒前
傅家庆完成签到 ,获得积分10
40秒前
44秒前
shaylie完成签到 ,获得积分10
45秒前
Owen应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
53秒前
浮浮世世应助科研通管家采纳,获得30
53秒前
浮游应助科研通管家采纳,获得10
53秒前
Owen应助科研通管家采纳,获得10
53秒前
56秒前
ilk666完成签到,获得积分10
58秒前
1997SD完成签到,获得积分10
1分钟前
ding应助伶俐的高烽采纳,获得10
1分钟前
dolabmu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Dr.YYF.发布了新的文献求助10
1分钟前
CipherSage应助Zylan采纳,获得10
1分钟前
HD发布了新的文献求助10
1分钟前
1997SD发布了新的文献求助10
1分钟前
1分钟前
tdtk发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493698
求助须知:如何正确求助?哪些是违规求助? 4591739
关于积分的说明 14434492
捐赠科研通 4524114
什么是DOI,文献DOI怎么找? 2478624
邀请新用户注册赠送积分活动 1463650
关于科研通互助平台的介绍 1436456