亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Sepsis Prediction Using Ensemble Learning With Deep Features and Artificial Features Extracted From Clinical Electronic Health Records

人工智能 机器学习 医学 试验装置 深度学习 健康档案 人工神经网络 败血症 二元分类 数据集 生命体征 电子健康档案 计算机科学 支持向量机 医疗保健 内科学 外科 经济 经济增长
作者
Zhengling He,Lidong Du,Pengfei Zhang,Rui Zhao,Xianxiang Chen,Zhen Fang
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (12): e1337-e1342 被引量:20
标识
DOI:10.1097/ccm.0000000000004644
摘要

Objectives: Sepsis is caused by infection and subsequent overreaction of immune system and will severely threaten human life. The early prediction is important for the treatment of sepsis. This report aims to develop an early prediction method for sepsis 6 hours ahead on the basis of clinical electronic health records. Data Sources: Challenge data are released by PhysioNet/Computing in Cardiology Challenge 2019 and obtained from ICU patients in three separate hospital systems. Part of the data from two datasets, including 40,336 subjects, are publicly available, and the remaining are used as hidden test set. A normalized utility score defined by the organizing committee is used for model performance evaluation. Study Selection: The supervised machine learning is applied to tackle this challenge. Specifically, we establish the prediction model under the framework of ensemble learning by integrating the artificial features based on clinical prior knowledge of sepsis with deep features automatically extracted by long short-term memory neural network. Data Extraction: Forty clinical variables, including eight vital signs, 26 laboratory values, and six demographics, were measured and recorded once an hour for each individual, and the binary label (0 or 1) was simultaneously provided for each item. Data Synthesis: The proposed model was evaluated by 30-fold cross-validation. The sensitivity, specificity, and normalized utility score were 0.641 ± 0.022, 0.844 ± 0.007, and 0.401 ± 0.019 on publicly available datasets, respectively. The final normalized utility score our team (UCAS_DataMiner) has obtained was 0.313 on full hidden test set (0.406, 0.373, and –0.215 on test set A, B, and C, respectively). Conclusions: We realized a 6-hour ahead early-onset prediction of sepsis on the basis of clinical electronic health record by ensemble learning. The results indicated the proposed model functioned well in the early prediction of sepsis. In particular, ensemble learning had a significant ( p < 0.01) improvement than any single model in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙卡烧烤店完成签到,获得积分0
刚刚
wanjunhao完成签到 ,获得积分10
2秒前
笑点低煎饼完成签到,获得积分10
2秒前
iNk应助龙傲天采纳,获得10
7秒前
等待寄云完成签到 ,获得积分10
8秒前
9秒前
恋雅颖月完成签到 ,获得积分10
10秒前
12秒前
13秒前
小将军完成签到,获得积分10
13秒前
Rochester完成签到,获得积分10
13秒前
14秒前
14秒前
华仔应助奋力的王打工人采纳,获得10
15秒前
柯亦云发布了新的文献求助10
17秒前
龙傲天完成签到,获得积分10
18秒前
阿文发布了新的文献求助10
18秒前
kkkinoko完成签到,获得积分10
19秒前
deswin发布了新的文献求助50
19秒前
RCheng发布了新的文献求助30
19秒前
L_MD完成签到,获得积分10
20秒前
奋力的王打工人完成签到,获得积分10
21秒前
Huanghong完成签到,获得积分10
23秒前
Vivi发布了新的文献求助10
24秒前
庞mou完成签到 ,获得积分10
25秒前
忐忑的安蕾完成签到,获得积分10
30秒前
DD完成签到 ,获得积分10
35秒前
dxwy完成签到,获得积分10
41秒前
火火完成签到 ,获得积分10
41秒前
英姑应助Vivi采纳,获得10
42秒前
Coffee完成签到 ,获得积分10
42秒前
儒雅的若翠完成签到,获得积分10
44秒前
柯飞扬完成签到,获得积分10
45秒前
传奇3应助科研通管家采纳,获得10
47秒前
田様应助科研通管家采纳,获得10
47秒前
Vivi完成签到,获得积分10
50秒前
刘梦完成签到 ,获得积分10
50秒前
科研通AI2S应助DagrZheng采纳,获得30
54秒前
1分钟前
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139464
求助须知:如何正确求助?哪些是违规求助? 2790346
关于积分的说明 7795029
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301411
科研通“疑难数据库(出版商)”最低求助积分说明 626219
版权声明 601141