Early Sepsis Prediction Using Ensemble Learning With Deep Features and Artificial Features Extracted From Clinical Electronic Health Records

人工智能 机器学习 医学 试验装置 深度学习 健康档案 人工神经网络 败血症 二元分类 数据集 生命体征 电子健康档案 计算机科学 支持向量机 医疗保健 内科学 外科 经济 经济增长
作者
Zhengling He,Lidong Du,Pengfei Zhang,Rui Zhao,Xianxiang Chen,Zhen Fang
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:48 (12): e1337-e1342 被引量:20
标识
DOI:10.1097/ccm.0000000000004644
摘要

Objectives: Sepsis is caused by infection and subsequent overreaction of immune system and will severely threaten human life. The early prediction is important for the treatment of sepsis. This report aims to develop an early prediction method for sepsis 6 hours ahead on the basis of clinical electronic health records. Data Sources: Challenge data are released by PhysioNet/Computing in Cardiology Challenge 2019 and obtained from ICU patients in three separate hospital systems. Part of the data from two datasets, including 40,336 subjects, are publicly available, and the remaining are used as hidden test set. A normalized utility score defined by the organizing committee is used for model performance evaluation. Study Selection: The supervised machine learning is applied to tackle this challenge. Specifically, we establish the prediction model under the framework of ensemble learning by integrating the artificial features based on clinical prior knowledge of sepsis with deep features automatically extracted by long short-term memory neural network. Data Extraction: Forty clinical variables, including eight vital signs, 26 laboratory values, and six demographics, were measured and recorded once an hour for each individual, and the binary label (0 or 1) was simultaneously provided for each item. Data Synthesis: The proposed model was evaluated by 30-fold cross-validation. The sensitivity, specificity, and normalized utility score were 0.641 ± 0.022, 0.844 ± 0.007, and 0.401 ± 0.019 on publicly available datasets, respectively. The final normalized utility score our team (UCAS_DataMiner) has obtained was 0.313 on full hidden test set (0.406, 0.373, and –0.215 on test set A, B, and C, respectively). Conclusions: We realized a 6-hour ahead early-onset prediction of sepsis on the basis of clinical electronic health record by ensemble learning. The results indicated the proposed model functioned well in the early prediction of sepsis. In particular, ensemble learning had a significant ( p < 0.01) improvement than any single model in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jessie完成签到,获得积分10
刚刚
Owen应助俄歇电子采纳,获得10
刚刚
彭于彦祖应助研友_842M4n采纳,获得20
1秒前
peikyang发布了新的文献求助10
1秒前
俭朴钢铁侠完成签到 ,获得积分10
2秒前
2秒前
3秒前
LL666完成签到 ,获得积分10
3秒前
我和狂三贴贴完成签到,获得积分10
4秒前
changhao6787完成签到,获得积分10
4秒前
Miao0603完成签到,获得积分10
4秒前
达瓦里氏发布了新的文献求助10
4秒前
4秒前
foxp3完成签到,获得积分10
5秒前
h w wang发布了新的文献求助10
5秒前
柒月完成签到,获得积分10
5秒前
夏天完成签到,获得积分10
6秒前
科研通AI2S应助自由寻冬采纳,获得10
6秒前
日落秋水完成签到,获得积分10
6秒前
冷静的高烽完成签到,获得积分10
6秒前
czj发布了新的文献求助10
7秒前
jin完成签到,获得积分10
7秒前
kai完成签到,获得积分10
7秒前
科研人完成签到,获得积分10
7秒前
许珩发布了新的文献求助10
8秒前
bkagyin应助will采纳,获得10
8秒前
wudizhuzhu233完成签到,获得积分10
8秒前
孙朱珠发布了新的文献求助10
9秒前
Annnnnn完成签到,获得积分10
9秒前
NexusExplorer应助phoebe采纳,获得10
9秒前
秋秋儿完成签到,获得积分10
9秒前
可爱的函函应助虞小渔采纳,获得10
10秒前
NICKPLZ完成签到,获得积分10
10秒前
czj完成签到,获得积分10
10秒前
blue发布了新的文献求助10
11秒前
12秒前
1111完成签到,获得积分10
12秒前
guozi完成签到,获得积分10
12秒前
nater1ver完成签到,获得积分10
12秒前
CIXI完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953576
求助须知:如何正确求助?哪些是违规求助? 3499159
关于积分的说明 11094348
捐赠科研通 3229748
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478