Early Sepsis Prediction Using Ensemble Learning With Deep Features and Artificial Features Extracted From Clinical Electronic Health Records

人工智能 机器学习 医学 试验装置 深度学习 健康档案 人工神经网络 败血症 二元分类 数据集 生命体征 电子健康档案 人口统计学的 计算机科学 支持向量机 医疗保健 内科学 外科 经济 经济增长 人口学 社会学
作者
Zhengling He,Lidong Du,Pengfei Zhang,Rongjian Zhao,Xianxiang Chen,Zhen Fang
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (12): e1337-e1342 被引量:28
标识
DOI:10.1097/ccm.0000000000004644
摘要

Objectives: Sepsis is caused by infection and subsequent overreaction of immune system and will severely threaten human life. The early prediction is important for the treatment of sepsis. This report aims to develop an early prediction method for sepsis 6 hours ahead on the basis of clinical electronic health records. Data Sources: Challenge data are released by PhysioNet/Computing in Cardiology Challenge 2019 and obtained from ICU patients in three separate hospital systems. Part of the data from two datasets, including 40,336 subjects, are publicly available, and the remaining are used as hidden test set. A normalized utility score defined by the organizing committee is used for model performance evaluation. Study Selection: The supervised machine learning is applied to tackle this challenge. Specifically, we establish the prediction model under the framework of ensemble learning by integrating the artificial features based on clinical prior knowledge of sepsis with deep features automatically extracted by long short-term memory neural network. Data Extraction: Forty clinical variables, including eight vital signs, 26 laboratory values, and six demographics, were measured and recorded once an hour for each individual, and the binary label (0 or 1) was simultaneously provided for each item. Data Synthesis: The proposed model was evaluated by 30-fold cross-validation. The sensitivity, specificity, and normalized utility score were 0.641 ± 0.022, 0.844 ± 0.007, and 0.401 ± 0.019 on publicly available datasets, respectively. The final normalized utility score our team (UCAS_DataMiner) has obtained was 0.313 on full hidden test set (0.406, 0.373, and –0.215 on test set A, B, and C, respectively). Conclusions: We realized a 6-hour ahead early-onset prediction of sepsis on the basis of clinical electronic health record by ensemble learning. The results indicated the proposed model functioned well in the early prediction of sepsis. In particular, ensemble learning had a significant ( p < 0.01) improvement than any single model in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nini应助球球的铲屎官采纳,获得20
刚刚
刚刚
归尘发布了新的文献求助10
刚刚
刚刚
1秒前
pretzel完成签到,获得积分10
1秒前
大个应助微笑翠桃采纳,获得10
1秒前
阔达远山完成签到,获得积分10
2秒前
li关注了科研通微信公众号
3秒前
lulu发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
旺旺完成签到,获得积分10
4秒前
科研通AI6应助啦啦王采纳,获得10
4秒前
wangcc完成签到 ,获得积分10
4秒前
4秒前
cc发布了新的文献求助30
5秒前
Summeryz920完成签到,获得积分10
5秒前
6秒前
7秒前
Yjy发布了新的文献求助10
7秒前
慕青应助大胆妙竹采纳,获得10
7秒前
7秒前
段非非完成签到,获得积分10
7秒前
马晓玲发布了新的文献求助10
8秒前
8秒前
在水一方应助WYYA采纳,获得10
9秒前
9秒前
9秒前
完美世界应助pretzel采纳,获得10
9秒前
石头饼关注了科研通微信公众号
9秒前
10秒前
xzccc发布了新的文献求助10
10秒前
共享精神应助高玉峰采纳,获得10
10秒前
子予发布了新的文献求助10
10秒前
10秒前
搜集达人应助Xu采纳,获得10
11秒前
科研通AI6应助YOLO采纳,获得10
11秒前
小蘑菇应助帅帅哈采纳,获得10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736