Early Sepsis Prediction Using Ensemble Learning With Deep Features and Artificial Features Extracted From Clinical Electronic Health Records

人工智能 机器学习 医学 试验装置 深度学习 健康档案 人工神经网络 败血症 二元分类 数据集 生命体征 电子健康档案 人口统计学的 计算机科学 支持向量机 医疗保健 内科学 外科 经济 经济增长 人口学 社会学
作者
Zhengling He,Lidong Du,Pengfei Zhang,Rongjian Zhao,Xianxiang Chen,Zhen Fang
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (12): e1337-e1342 被引量:28
标识
DOI:10.1097/ccm.0000000000004644
摘要

Objectives: Sepsis is caused by infection and subsequent overreaction of immune system and will severely threaten human life. The early prediction is important for the treatment of sepsis. This report aims to develop an early prediction method for sepsis 6 hours ahead on the basis of clinical electronic health records. Data Sources: Challenge data are released by PhysioNet/Computing in Cardiology Challenge 2019 and obtained from ICU patients in three separate hospital systems. Part of the data from two datasets, including 40,336 subjects, are publicly available, and the remaining are used as hidden test set. A normalized utility score defined by the organizing committee is used for model performance evaluation. Study Selection: The supervised machine learning is applied to tackle this challenge. Specifically, we establish the prediction model under the framework of ensemble learning by integrating the artificial features based on clinical prior knowledge of sepsis with deep features automatically extracted by long short-term memory neural network. Data Extraction: Forty clinical variables, including eight vital signs, 26 laboratory values, and six demographics, were measured and recorded once an hour for each individual, and the binary label (0 or 1) was simultaneously provided for each item. Data Synthesis: The proposed model was evaluated by 30-fold cross-validation. The sensitivity, specificity, and normalized utility score were 0.641 ± 0.022, 0.844 ± 0.007, and 0.401 ± 0.019 on publicly available datasets, respectively. The final normalized utility score our team (UCAS_DataMiner) has obtained was 0.313 on full hidden test set (0.406, 0.373, and –0.215 on test set A, B, and C, respectively). Conclusions: We realized a 6-hour ahead early-onset prediction of sepsis on the basis of clinical electronic health record by ensemble learning. The results indicated the proposed model functioned well in the early prediction of sepsis. In particular, ensemble learning had a significant ( p < 0.01) improvement than any single model in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的囧完成签到,获得积分10
12秒前
MC123完成签到,获得积分10
13秒前
wsafhgfjb完成签到,获得积分10
14秒前
17秒前
黄启烽完成签到,获得积分10
25秒前
文献属于所有科研人关注了科研通微信公众号
30秒前
啦啦啦啦啦完成签到,获得积分10
31秒前
33秒前
凌泉完成签到 ,获得积分10
34秒前
别有乾坤完成签到 ,获得积分10
34秒前
qaplay完成签到 ,获得积分0
35秒前
阿然完成签到,获得积分10
38秒前
天晴完成签到,获得积分10
41秒前
是真的完成签到 ,获得积分10
44秒前
yanmh完成签到,获得积分10
45秒前
kmzzy完成签到 ,获得积分10
50秒前
大汤圆圆完成签到 ,获得积分10
1分钟前
Gavin完成签到,获得积分10
1分钟前
嗡嗡完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分0
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
活泼的南风完成签到,获得积分10
1分钟前
ZSZ完成签到,获得积分10
1分钟前
wei发布了新的文献求助10
1分钟前
是三石啊完成签到 ,获得积分10
1分钟前
xhsz1111完成签到 ,获得积分10
1分钟前
sweet完成签到 ,获得积分10
1分钟前
一一完成签到 ,获得积分10
1分钟前
zz321完成签到,获得积分10
1分钟前
chen完成签到,获得积分10
1分钟前
共享精神应助wei采纳,获得10
1分钟前
万能图书馆应助lzy303886采纳,获得10
1分钟前
星辉的斑斓完成签到 ,获得积分10
1分钟前
SerCheung完成签到,获得积分10
1分钟前
Brave发布了新的文献求助10
1分钟前
zhongxia完成签到 ,获得积分10
1分钟前
科研摆渡人完成签到,获得积分10
1分钟前
耍酷的雪糕完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689486
捐赠科研通 4591896
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136