Early Sepsis Prediction Using Ensemble Learning With Deep Features and Artificial Features Extracted From Clinical Electronic Health Records

人工智能 机器学习 医学 试验装置 深度学习 健康档案 人工神经网络 败血症 二元分类 数据集 生命体征 电子健康档案 人口统计学的 计算机科学 支持向量机 医疗保健 内科学 外科 经济 经济增长 人口学 社会学
作者
Zhengling He,Lidong Du,Pengfei Zhang,Rongjian Zhao,Xianxiang Chen,Zhen Fang
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (12): e1337-e1342 被引量:28
标识
DOI:10.1097/ccm.0000000000004644
摘要

Objectives: Sepsis is caused by infection and subsequent overreaction of immune system and will severely threaten human life. The early prediction is important for the treatment of sepsis. This report aims to develop an early prediction method for sepsis 6 hours ahead on the basis of clinical electronic health records. Data Sources: Challenge data are released by PhysioNet/Computing in Cardiology Challenge 2019 and obtained from ICU patients in three separate hospital systems. Part of the data from two datasets, including 40,336 subjects, are publicly available, and the remaining are used as hidden test set. A normalized utility score defined by the organizing committee is used for model performance evaluation. Study Selection: The supervised machine learning is applied to tackle this challenge. Specifically, we establish the prediction model under the framework of ensemble learning by integrating the artificial features based on clinical prior knowledge of sepsis with deep features automatically extracted by long short-term memory neural network. Data Extraction: Forty clinical variables, including eight vital signs, 26 laboratory values, and six demographics, were measured and recorded once an hour for each individual, and the binary label (0 or 1) was simultaneously provided for each item. Data Synthesis: The proposed model was evaluated by 30-fold cross-validation. The sensitivity, specificity, and normalized utility score were 0.641 ± 0.022, 0.844 ± 0.007, and 0.401 ± 0.019 on publicly available datasets, respectively. The final normalized utility score our team (UCAS_DataMiner) has obtained was 0.313 on full hidden test set (0.406, 0.373, and –0.215 on test set A, B, and C, respectively). Conclusions: We realized a 6-hour ahead early-onset prediction of sepsis on the basis of clinical electronic health record by ensemble learning. The results indicated the proposed model functioned well in the early prediction of sepsis. In particular, ensemble learning had a significant ( p < 0.01) improvement than any single model in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
葉芊羽发布了新的文献求助10
刚刚
乐观小之应助sunzhuxi采纳,获得10
2秒前
2秒前
健忘的曼青关注了科研通微信公众号
5秒前
耶耶完成签到,获得积分10
7秒前
脑洞疼应助zhogwe采纳,获得10
7秒前
9秒前
9秒前
含糊的钢笔完成签到,获得积分10
9秒前
9秒前
大个应助朴实的纸飞机采纳,获得10
9秒前
邓佳鑫Alan应助俊逸青柏采纳,获得10
10秒前
11秒前
12秒前
swich完成签到,获得积分10
13秒前
852应助Bai采纳,获得10
13秒前
所所应助kendrick677采纳,获得10
13秒前
婉孝完成签到,获得积分10
13秒前
深林狼完成签到,获得积分10
14秒前
周传强发布了新的文献求助10
14秒前
一半一半发布了新的文献求助10
15秒前
15秒前
美亲完成签到,获得积分10
15秒前
16秒前
炙热迎波发布了新的文献求助10
16秒前
求助人员发布了新的文献求助10
16秒前
咖啡不加糖完成签到,获得积分10
16秒前
桐桐应助塔塔开采纳,获得10
17秒前
17秒前
cheong完成签到,获得积分10
18秒前
18秒前
英吉利25发布了新的文献求助10
19秒前
meng发布了新的文献求助30
21秒前
21秒前
21秒前
咕咕发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243