Early Sepsis Prediction Using Ensemble Learning With Deep Features and Artificial Features Extracted From Clinical Electronic Health Records

人工智能 机器学习 医学 试验装置 深度学习 健康档案 人工神经网络 败血症 二元分类 数据集 生命体征 电子健康档案 人口统计学的 计算机科学 支持向量机 医疗保健 内科学 外科 经济 经济增长 人口学 社会学
作者
Zhengling He,Lidong Du,Pengfei Zhang,Rongjian Zhao,Xianxiang Chen,Zhen Fang
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (12): e1337-e1342 被引量:28
标识
DOI:10.1097/ccm.0000000000004644
摘要

Objectives: Sepsis is caused by infection and subsequent overreaction of immune system and will severely threaten human life. The early prediction is important for the treatment of sepsis. This report aims to develop an early prediction method for sepsis 6 hours ahead on the basis of clinical electronic health records. Data Sources: Challenge data are released by PhysioNet/Computing in Cardiology Challenge 2019 and obtained from ICU patients in three separate hospital systems. Part of the data from two datasets, including 40,336 subjects, are publicly available, and the remaining are used as hidden test set. A normalized utility score defined by the organizing committee is used for model performance evaluation. Study Selection: The supervised machine learning is applied to tackle this challenge. Specifically, we establish the prediction model under the framework of ensemble learning by integrating the artificial features based on clinical prior knowledge of sepsis with deep features automatically extracted by long short-term memory neural network. Data Extraction: Forty clinical variables, including eight vital signs, 26 laboratory values, and six demographics, were measured and recorded once an hour for each individual, and the binary label (0 or 1) was simultaneously provided for each item. Data Synthesis: The proposed model was evaluated by 30-fold cross-validation. The sensitivity, specificity, and normalized utility score were 0.641 ± 0.022, 0.844 ± 0.007, and 0.401 ± 0.019 on publicly available datasets, respectively. The final normalized utility score our team (UCAS_DataMiner) has obtained was 0.313 on full hidden test set (0.406, 0.373, and –0.215 on test set A, B, and C, respectively). Conclusions: We realized a 6-hour ahead early-onset prediction of sepsis on the basis of clinical electronic health record by ensemble learning. The results indicated the proposed model functioned well in the early prediction of sepsis. In particular, ensemble learning had a significant ( p < 0.01) improvement than any single model in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助梦醒时采纳,获得10
1秒前
隐形曼青应助如意巨人采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
orixero应助独特凌萱采纳,获得10
2秒前
chlachj完成签到,获得积分20
3秒前
脑洞疼应助nenoaowu采纳,获得10
3秒前
怕黑犀牛发布了新的文献求助10
3秒前
4秒前
5秒前
shasha完成签到,获得积分10
5秒前
科研通AI6应助无私代芹采纳,获得10
6秒前
6秒前
7秒前
7秒前
9秒前
爆米花应助昕昕233采纳,获得20
10秒前
nenoaowu完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Wangyn完成签到,获得积分10
10秒前
伯喈完成签到,获得积分10
10秒前
Duomo完成签到 ,获得积分10
11秒前
笨笨百招完成签到,获得积分10
11秒前
xiaoxiao完成签到,获得积分10
12秒前
Jupiter 1234发布了新的文献求助10
13秒前
13秒前
14秒前
LIGHT完成签到,获得积分10
14秒前
成长完成签到,获得积分10
14秒前
芳菲依旧应助chlachj采纳,获得40
14秒前
清爽老九完成签到,获得积分10
14秒前
希望天下0贩的0应助wangqq采纳,获得10
14秒前
无极微光应助叶白山采纳,获得20
15秒前
Akim应助twob采纳,获得10
15秒前
研友_IEEE快到碗里来完成签到,获得积分20
15秒前
15秒前
香橙完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243