Learning Fashion Compatibility with Bidirectional LSTMs

计算机科学 嵌入 相容性(地球化学) 情报检索 人工智能 自然语言处理 训练集 人机交互 地球化学 地质学
作者
Xintong Han,Zuxuan Wu,Yu-Gang Jiang,Larry S. Davis
标识
DOI:10.1145/3123266.3123394
摘要

The ubiquity of online fashion shopping demands effective recommendation services for customers. In this paper, we study two types of fashion recommendation: (i) suggesting an item that matches existing components in a set to form a stylish outfit (a collection of fashion items), and (ii) generating an outfit with multimodal (images/text) specifications from a user. To this end, we propose to jointly learn a visual-semantic embedding and the compatibility relationships among fashion items in an end-to-end fashion. More specifically, we consider a fashion outfit to be a sequence (usually from top to bottom and then accessories) and each item in the outfit as a time step. Given the fashion items in an outfit, we train a bidirectional LSTM (Bi-LSTM) model to sequentially predict the next item conditioned on previous ones to learn their compatibility relationships. Further, we learn a visual-semantic space by regressing image features to their semantic representations aiming to inject attribute and category information as a regularization for training the LSTM. The trained network can not only perform the aforementioned recommendations effectively but also predict the compatibility of a given outfit. We conduct extensive experiments on our newly collected Polyvore dataset, and the results provide strong qualitative and quantitative evidence that our framework outperforms alternative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助刘芸芸采纳,获得10
2秒前
baijiayi完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
song发布了新的文献求助10
3秒前
LEMON发布了新的文献求助10
4秒前
4秒前
Aha完成签到 ,获得积分10
4秒前
4秒前
乐乐应助狂野世立采纳,获得10
5秒前
yzz完成签到,获得积分10
5秒前
5秒前
SYLH应助曾水采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
陈佳琪发布了新的文献求助30
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
pluto应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
单复天完成签到,获得积分10
7秒前
7秒前
jgy应助科研通管家采纳,获得30
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
shouyu29应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762