Learning Fashion Compatibility with Bidirectional LSTMs

计算机科学 嵌入 相容性(地球化学) 情报检索 人工智能 自然语言处理 训练集 人机交互 地球化学 地质学
作者
Xintong Han,Zuxuan Wu,Yu-Gang Jiang,Larry S. Davis
标识
DOI:10.1145/3123266.3123394
摘要

The ubiquity of online fashion shopping demands effective recommendation services for customers. In this paper, we study two types of fashion recommendation: (i) suggesting an item that matches existing components in a set to form a stylish outfit (a collection of fashion items), and (ii) generating an outfit with multimodal (images/text) specifications from a user. To this end, we propose to jointly learn a visual-semantic embedding and the compatibility relationships among fashion items in an end-to-end fashion. More specifically, we consider a fashion outfit to be a sequence (usually from top to bottom and then accessories) and each item in the outfit as a time step. Given the fashion items in an outfit, we train a bidirectional LSTM (Bi-LSTM) model to sequentially predict the next item conditioned on previous ones to learn their compatibility relationships. Further, we learn a visual-semantic space by regressing image features to their semantic representations aiming to inject attribute and category information as a regularization for training the LSTM. The trained network can not only perform the aforementioned recommendations effectively but also predict the compatibility of a given outfit. We conduct extensive experiments on our newly collected Polyvore dataset, and the results provide strong qualitative and quantitative evidence that our framework outperforms alternative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰应助白华苍松采纳,获得20
刚刚
Kelly1426完成签到,获得积分10
1秒前
淳于黎昕完成签到,获得积分10
1秒前
JamesPei应助哈哈采纳,获得10
1秒前
1秒前
兴奋中道发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
所所应助suzy采纳,获得10
2秒前
隐形曼青应助shiche采纳,获得10
3秒前
Sofia完成签到,获得积分10
3秒前
郝宝真发布了新的文献求助10
3秒前
大个应助歪比巴卜采纳,获得10
4秒前
黄金天下完成签到,获得积分10
4秒前
dddd发布了新的文献求助10
4秒前
慕容博完成签到 ,获得积分10
5秒前
搜集达人应助微甜柠檬采纳,获得10
6秒前
6秒前
ooseabiscuit完成签到,获得积分10
6秒前
Jasper应助IAMXC采纳,获得10
6秒前
噗宝凹发布了新的文献求助10
7秒前
longjiafang完成签到 ,获得积分10
7秒前
Song发布了新的文献求助10
7秒前
fanfan完成签到,获得积分10
7秒前
eyu发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
honeymoon发布了新的文献求助10
10秒前
CipherSage应助super采纳,获得30
10秒前
草莓熊发布了新的文献求助10
11秒前
科研通AI2S应助米团采纳,获得30
11秒前
11秒前
乐乐乐发布了新的文献求助10
12秒前
深情安青应助Song采纳,获得10
12秒前
风中的暴雪完成签到,获得积分10
13秒前
13秒前
科研的POWER完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587