Use of radiomics based on 18F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach

人工智能 无线电技术 医学 临床决策 放射科 正电子发射断层摄影术 医学物理学 计算机科学 核医学 重症监护医学
作者
Yi Zhou,Xuelei Ma,Ting Zhang,Jian Wang,Tao Zhang,Rong Tian
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:48 (9): 2904-2913 被引量:57
标识
DOI:10.1007/s00259-021-05220-7
摘要

This study was designed and performed to assess the ability of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) radiomics features combined with machine learning methods to differentiate between primary and metastatic lung lesions and to classify histological subtypes. Moreover, we identified the optimal machine learning method. A total of 769 patients pathologically diagnosed with primary or metastatic lung cancers were enrolled. We used the LIFEx package to extract radiological features from semiautomatically segmented PET and CT images within the same volume of interest. Patients were randomly distributed in training and validation sets. Through the evaluation of five feature selection methods and nine classification methods, discriminant models were established. The robustness of the procedure was controlled by tenfold cross-validation. The model’s performance was evaluated using the area under the receiver operating characteristic curve (AUC). Based on the radiomics features extracted from PET and CT images, forty-five discriminative models were established. Combined with appropriate feature selection methods, most classifiers showed excellent discriminative ability with AUCs greater than 0.75. In the differentiation between primary and metastatic lung lesions, the feature selection method gradient boosting decision tree (GBDT) combined with the classifier GBDT achieved the highest classification AUC of 0.983 in the PET dataset. In contrast, the feature selection method eXtreme gradient boosting combined with the classifier random forest (RF) achieved the highest AUC of 0.828 in the CT dataset. In the discrimination between squamous cell carcinoma and adenocarcinoma, the combination of GBDT feature selection method with GBDT classification had the highest AUC of 0.897 in the PET dataset. In contrast, the combination of the GBDT feature selection method with the RF classification had the highest AUC of 0.839 in the CT dataset. Most of the decision tree (DT)-based models were overfitted, suggesting that the classification method was not appropriate for practical application. 18F-FDG PET/CT radiomics features combined with machine learning methods can distinguish between primary and metastatic lung lesions and identify histological subtypes in lung cancer. GBDT and RF were considered optimal classification methods for the PET and CT datasets, respectively, and GBDT was considered the optimal feature selection method in our analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
傲娇文博发布了新的文献求助10
1秒前
乐观沛白完成签到,获得积分10
1秒前
1秒前
高兴孤萍完成签到 ,获得积分10
5秒前
可爱的函函应助南风不竞采纳,获得10
5秒前
天天快乐应助对啊采纳,获得10
7秒前
iwaking完成签到,获得积分10
7秒前
7秒前
ZCH1111完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
张聪完成签到,获得积分10
10秒前
lsy871437154完成签到,获得积分10
10秒前
咎如天完成签到,获得积分20
11秒前
倪好发布了新的文献求助30
11秒前
anny.white完成签到,获得积分10
12秒前
多摩川的烟花少年完成签到,获得积分10
12秒前
addeoo发布了新的文献求助10
14秒前
九日科研ing完成签到,获得积分0
15秒前
完美芹发布了新的文献求助10
15秒前
lsy871437154发布了新的文献求助10
16秒前
16秒前
心愿完成签到 ,获得积分10
16秒前
18秒前
18秒前
19秒前
研友_VZG7GZ应助奥沙利楠采纳,获得10
19秒前
番茄死忠粉完成签到,获得积分10
19秒前
19秒前
灰色与青完成签到,获得积分10
20秒前
20秒前
传奇3应助完美芹采纳,获得10
21秒前
rrrr完成签到,获得积分10
22秒前
22秒前
huco发布了新的文献求助20
22秒前
向日葵完成签到,获得积分10
23秒前
张张发布了新的文献求助10
24秒前
lalalala发布了新的文献求助10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260482
求助须知:如何正确求助?哪些是违规求助? 2901663
关于积分的说明 8316456
捐赠科研通 2571234
什么是DOI,文献DOI怎么找? 1396896
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632040