已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of radiomics based on 18F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach

人工智能 无线电技术 医学 临床决策 放射科 正电子发射断层摄影术 医学物理学 计算机科学 核医学 重症监护医学
作者
Yi Zhou,Xuelei Ma,Ting Zhang,Jian Wang,Tao Zhang,Rong Tian
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:48 (9): 2904-2913 被引量:63
标识
DOI:10.1007/s00259-021-05220-7
摘要

This study was designed and performed to assess the ability of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) radiomics features combined with machine learning methods to differentiate between primary and metastatic lung lesions and to classify histological subtypes. Moreover, we identified the optimal machine learning method. A total of 769 patients pathologically diagnosed with primary or metastatic lung cancers were enrolled. We used the LIFEx package to extract radiological features from semiautomatically segmented PET and CT images within the same volume of interest. Patients were randomly distributed in training and validation sets. Through the evaluation of five feature selection methods and nine classification methods, discriminant models were established. The robustness of the procedure was controlled by tenfold cross-validation. The model’s performance was evaluated using the area under the receiver operating characteristic curve (AUC). Based on the radiomics features extracted from PET and CT images, forty-five discriminative models were established. Combined with appropriate feature selection methods, most classifiers showed excellent discriminative ability with AUCs greater than 0.75. In the differentiation between primary and metastatic lung lesions, the feature selection method gradient boosting decision tree (GBDT) combined with the classifier GBDT achieved the highest classification AUC of 0.983 in the PET dataset. In contrast, the feature selection method eXtreme gradient boosting combined with the classifier random forest (RF) achieved the highest AUC of 0.828 in the CT dataset. In the discrimination between squamous cell carcinoma and adenocarcinoma, the combination of GBDT feature selection method with GBDT classification had the highest AUC of 0.897 in the PET dataset. In contrast, the combination of the GBDT feature selection method with the RF classification had the highest AUC of 0.839 in the CT dataset. Most of the decision tree (DT)-based models were overfitted, suggesting that the classification method was not appropriate for practical application. 18F-FDG PET/CT radiomics features combined with machine learning methods can distinguish between primary and metastatic lung lesions and identify histological subtypes in lung cancer. GBDT and RF were considered optimal classification methods for the PET and CT datasets, respectively, and GBDT was considered the optimal feature selection method in our analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KBDYD完成签到,获得积分10
2秒前
3秒前
xiongyh10完成签到,获得积分10
8秒前
纷踏不再发布了新的文献求助10
8秒前
奔波霸完成签到 ,获得积分10
14秒前
Cu完成签到 ,获得积分10
18秒前
22秒前
22秒前
炙热书白完成签到,获得积分10
23秒前
Rory完成签到 ,获得积分10
24秒前
科研完成签到 ,获得积分10
26秒前
想游泳的鹰完成签到,获得积分10
27秒前
FODCOC完成签到,获得积分10
27秒前
暴富发布了新的文献求助10
28秒前
zhoupu发布了新的文献求助10
28秒前
厌世小白龙关注了科研通微信公众号
31秒前
依依发布了新的文献求助10
32秒前
32秒前
暴富完成签到,获得积分20
35秒前
Shuo Yang发布了新的文献求助10
36秒前
GGBoy完成签到 ,获得积分10
37秒前
从容问寒完成签到 ,获得积分10
37秒前
Eins完成签到 ,获得积分10
37秒前
光之剑完成签到,获得积分10
40秒前
又村完成签到 ,获得积分10
42秒前
烊驼完成签到,获得积分10
45秒前
111完成签到 ,获得积分10
48秒前
Akim应助语冰采纳,获得10
48秒前
小二郎应助尾号6533采纳,获得10
49秒前
纷踏不再完成签到,获得积分10
55秒前
56秒前
冰冰完成签到 ,获得积分10
59秒前
59秒前
哇塞完成签到 ,获得积分10
1分钟前
语冰发布了新的文献求助10
1分钟前
1分钟前
kangkang发布了新的文献求助10
1分钟前
布丁仔完成签到,获得积分10
1分钟前
Jasper应助语冰采纳,获得10
1分钟前
侯栋完成签到,获得积分20
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234