材料科学
电容器
电介质
铁电性
复合材料
极化(电化学)
储能
光电子学
电气工程
电压
功率(物理)
量子力学
物理
工程类
物理化学
化学
作者
Xintong Ren,Nan Meng,Han Zhang,Jiyue Wu,Isaac Abrahams,Haixue Yan,Emiliano Bilotti,Michael J. Reece
出处
期刊:Nano Energy
[Elsevier]
日期:2020-03-04
卷期号:72: 104662-104662
被引量:102
标识
DOI:10.1016/j.nanoen.2020.104662
摘要
High power dielectric capacitors with high energy density are needed in order to develop modern electronic and electrical systems, including hybrid vehicles, telecommunication infrastructures and portable electronic devices. Relaxor ferroelectric polymers (RFP) are considered to be the most promising candidates for the next generation of capacitors owing to their relatively high energy storage density. However, the commercialization of RFP capacitors in power systems is hindered by their high cost and low dielectric breakdown strength. In this study, inexpensive, free-standing nano-crystalline (~3.3 nm) poly (vinylidene fluoride) (PVDF) films with high β phase content (~98%), “relaxor-like” ferroelectric behaviour and high breakdown strength (880 kV/mm) were fabricated using the facile Press & Folding (P&F) technique. An internal stress dominated polarization switching model is proposed to explain the origin of the relaxor-like ferroelectric behaviour. The internal stress generated during pressing alters the intermolecular chain distance of the (200) plane of β-PVDF from 4.24 Å in internal stress free films to 4.54 Å in P&F films, corresponding to a tensile strain and residual stress of 7.11% and 142 MPa, respectively. The internal stress acts to partially reverse the polarization on reversal of the applied electric field. This, combined with preferred in-plane orientation of the crystallites, results in a polar nanostructure with high polarization reversibility at high electric fields. A giant discharged energy storage density of 39.8 J/cm3 at 880 kV/mm was achieved for P&F films, which surpasses all previously reported polymer-based materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI