Improved automated segmentation of human kidney organoids using deep convolutional neural networks

计算机科学 卷积神经网络 类有机物 初始化 分割 人工智能 模式识别(心理学) 工作流程 图像分割 深度学习 计算机视觉 生物 神经科学 数据库 程序设计语言
作者
Michael B. MacDonald,Theron R. Fennel,Asha Singanamalli,Nelly M Cruz,Mohammad Yousefhussein,Yousef Al-Kofahi,Benjamin Freedman
标识
DOI:10.1117/12.2549830
摘要

Organoids are multicellular structures grown in the lab that resemble tissues or organs of the body. We recently generated human kidney organoids compatible with high throughput screening for developmental and disease phenotypes. Accurately segmenting large-scale image collections of organoids remains a challenge. We investigated automated segmentation of these structures using both conventional image processing algorithms and two different deep convolutional neural network architectures. Our dataset consisted of multi-channel images of organoids in 384-well plates, labeling distal tubules, proximal tubules, and podocytes as distinct segments. These images were used either for training and validation, or for testing. Each image was initially subjected to automated segmentation using a customized CellProfiler workflow. Separately, we performed semantic organoid segmentation using a Residual UNet (ResUNet) architecture, and instance organoid segmentation using a Mask R-CNN (MRCNN) architecture. For the latter, we compared model performance after initializing network weights in three different ways: randomly, using ResNet-50 weights pre-trained on the COCO dataset, and using ResUNet weights pre-trained on organoid images. Using ResUNet or randomly initializing MRCNN backbone weights provided improved semantic segmentation compared to using precomputed weights from COCO or ResUNet, or to using the CellProfiler workflow. Conversely, using precomputed weights to initialize MRCNN provided better instance segmentation accuracy and sensitivity than random initialization. Our findings provide a basis for automated segmentation of organoids with convolutional neural networks, to aid in high throughput screening for compounds relevant to renal phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禁止通行发布了新的文献求助10
刚刚
Ray完成签到,获得积分10
2秒前
fmd123完成签到,获得积分20
2秒前
我想吃薯条完成签到 ,获得积分10
2秒前
poppysss发布了新的文献求助10
3秒前
可爱的函函应助一把过采纳,获得10
3秒前
UPUP完成签到,获得积分10
4秒前
DDF完成签到 ,获得积分10
4秒前
5秒前
顾矜应助BenQiu采纳,获得10
5秒前
孙福禄应助牛奶秋刀鱼采纳,获得10
6秒前
@@@发布了新的文献求助10
6秒前
Eusha完成签到,获得积分10
7秒前
吴家辉完成签到,获得积分10
7秒前
zhanwenlin完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
追寻的问玉完成签到 ,获得积分10
9秒前
博修完成签到,获得积分10
11秒前
上官若男应助冷酷严青采纳,获得10
11秒前
辉夜折影完成签到,获得积分10
12秒前
12秒前
12秒前
hayden发布了新的文献求助10
13秒前
14秒前
tao完成签到 ,获得积分10
14秒前
能能发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助huyuan采纳,获得10
15秒前
共享精神应助深时采纳,获得10
15秒前
永康发布了新的文献求助10
16秒前
BenQiu完成签到,获得积分10
17秒前
17秒前
shirley完成签到,获得积分10
17秒前
高贵路灯发布了新的文献求助10
17秒前
17秒前
neao完成签到 ,获得积分10
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582