重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Improved automated segmentation of human kidney organoids using deep convolutional neural networks

计算机科学 卷积神经网络 类有机物 初始化 分割 人工智能 模式识别(心理学) 工作流程 图像分割 深度学习 计算机视觉 生物 神经科学 数据库 程序设计语言
作者
Michael B. MacDonald,Theron R. Fennel,Asha Singanamalli,Nelly M Cruz,Mohammad Yousefhussein,Yousef Al-Kofahi,Benjamin Freedman
标识
DOI:10.1117/12.2549830
摘要

Organoids are multicellular structures grown in the lab that resemble tissues or organs of the body. We recently generated human kidney organoids compatible with high throughput screening for developmental and disease phenotypes. Accurately segmenting large-scale image collections of organoids remains a challenge. We investigated automated segmentation of these structures using both conventional image processing algorithms and two different deep convolutional neural network architectures. Our dataset consisted of multi-channel images of organoids in 384-well plates, labeling distal tubules, proximal tubules, and podocytes as distinct segments. These images were used either for training and validation, or for testing. Each image was initially subjected to automated segmentation using a customized CellProfiler workflow. Separately, we performed semantic organoid segmentation using a Residual UNet (ResUNet) architecture, and instance organoid segmentation using a Mask R-CNN (MRCNN) architecture. For the latter, we compared model performance after initializing network weights in three different ways: randomly, using ResNet-50 weights pre-trained on the COCO dataset, and using ResUNet weights pre-trained on organoid images. Using ResUNet or randomly initializing MRCNN backbone weights provided improved semantic segmentation compared to using precomputed weights from COCO or ResUNet, or to using the CellProfiler workflow. Conversely, using precomputed weights to initialize MRCNN provided better instance segmentation accuracy and sensitivity than random initialization. Our findings provide a basis for automated segmentation of organoids with convolutional neural networks, to aid in high throughput screening for compounds relevant to renal phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宋浩奇完成签到 ,获得积分10
2秒前
浮游应助hxz采纳,获得50
2秒前
2秒前
毅毅子发布了新的文献求助10
3秒前
泰山球迷发布了新的文献求助10
3秒前
Wn发布了新的文献求助200
3秒前
CR7完成签到,获得积分0
4秒前
airtermis发布了新的文献求助10
4秒前
善学以致用应助缓慢冷风采纳,获得10
4秒前
w2完成签到,获得积分10
4秒前
Jolin完成签到,获得积分10
4秒前
lsn发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助30
5秒前
5秒前
糊涂的中恶完成签到,获得积分10
5秒前
哭泣的金鱼完成签到,获得积分10
5秒前
wangyamei发布了新的文献求助10
6秒前
6秒前
传奇3应助Ruhe采纳,获得10
6秒前
隐形曼青应助追1采纳,获得10
6秒前
6秒前
充电宝应助Gaojin锦采纳,获得10
6秒前
6秒前
7秒前
陈好完成签到,获得积分10
8秒前
anlifei发布了新的文献求助10
8秒前
8秒前
温酽发布了新的文献求助10
9秒前
飞翔的霸天哥应助穆穆穆采纳,获得30
10秒前
zhuchenglu发布了新的文献求助10
10秒前
寡核苷酸小白完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
于建国完成签到,获得积分10
11秒前
坚定的依琴完成签到,获得积分10
11秒前
典雅擎苍完成签到,获得积分20
11秒前
俭朴新瑶发布了新的文献求助10
12秒前
12秒前
风吹麦田应助陈好采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605