Improved automated segmentation of human kidney organoids using deep convolutional neural networks

计算机科学 卷积神经网络 类有机物 初始化 分割 人工智能 模式识别(心理学) 工作流程 图像分割 深度学习 计算机视觉 生物 神经科学 数据库 程序设计语言
作者
Michael B. MacDonald,Theron R. Fennel,Asha Singanamalli,Nelly M Cruz,Mohammad Yousefhussein,Yousef Al-Kofahi,Benjamin Freedman
标识
DOI:10.1117/12.2549830
摘要

Organoids are multicellular structures grown in the lab that resemble tissues or organs of the body. We recently generated human kidney organoids compatible with high throughput screening for developmental and disease phenotypes. Accurately segmenting large-scale image collections of organoids remains a challenge. We investigated automated segmentation of these structures using both conventional image processing algorithms and two different deep convolutional neural network architectures. Our dataset consisted of multi-channel images of organoids in 384-well plates, labeling distal tubules, proximal tubules, and podocytes as distinct segments. These images were used either for training and validation, or for testing. Each image was initially subjected to automated segmentation using a customized CellProfiler workflow. Separately, we performed semantic organoid segmentation using a Residual UNet (ResUNet) architecture, and instance organoid segmentation using a Mask R-CNN (MRCNN) architecture. For the latter, we compared model performance after initializing network weights in three different ways: randomly, using ResNet-50 weights pre-trained on the COCO dataset, and using ResUNet weights pre-trained on organoid images. Using ResUNet or randomly initializing MRCNN backbone weights provided improved semantic segmentation compared to using precomputed weights from COCO or ResUNet, or to using the CellProfiler workflow. Conversely, using precomputed weights to initialize MRCNN provided better instance segmentation accuracy and sensitivity than random initialization. Our findings provide a basis for automated segmentation of organoids with convolutional neural networks, to aid in high throughput screening for compounds relevant to renal phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
1秒前
期刊应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
最卷的卷心菜完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得50
1秒前
田様应助科研通管家采纳,获得100
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
yun尘世应助科研通管家采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
知性的映之完成签到,获得积分10
2秒前
2秒前
小蘑菇应助圈圈采纳,获得10
2秒前
万能图书馆应助七块采纳,获得10
3秒前
yatou5651发布了新的文献求助10
3秒前
小二郎应助futing采纳,获得10
3秒前
天天快乐应助阿金采纳,获得10
3秒前
flyabc完成签到,获得积分10
4秒前
qp发布了新的文献求助10
4秒前
香蕉觅云应助刘鹏宇采纳,获得10
5秒前
可爱的函函应助沉静哲瀚采纳,获得10
5秒前
5秒前
5秒前
乖乖完成签到,获得积分20
5秒前
6秒前
6秒前
小豆芽儿完成签到,获得积分20
6秒前
布鲁鲁完成签到,获得积分10
8秒前
偷猪剑客完成签到,获得积分10
8秒前
SQ发布了新的文献求助10
8秒前
9秒前
李健应助强健的月饼采纳,获得30
9秒前
陶1122完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678