Improved automated segmentation of human kidney organoids using deep convolutional neural networks

计算机科学 卷积神经网络 类有机物 初始化 分割 人工智能 模式识别(心理学) 工作流程 图像分割 深度学习 计算机视觉 生物 神经科学 数据库 程序设计语言
作者
Michael B. MacDonald,Theron R. Fennel,Asha Singanamalli,Nelly M Cruz,Mohammad Yousefhussein,Yousef Al-Kofahi,Benjamin Freedman
标识
DOI:10.1117/12.2549830
摘要

Organoids are multicellular structures grown in the lab that resemble tissues or organs of the body. We recently generated human kidney organoids compatible with high throughput screening for developmental and disease phenotypes. Accurately segmenting large-scale image collections of organoids remains a challenge. We investigated automated segmentation of these structures using both conventional image processing algorithms and two different deep convolutional neural network architectures. Our dataset consisted of multi-channel images of organoids in 384-well plates, labeling distal tubules, proximal tubules, and podocytes as distinct segments. These images were used either for training and validation, or for testing. Each image was initially subjected to automated segmentation using a customized CellProfiler workflow. Separately, we performed semantic organoid segmentation using a Residual UNet (ResUNet) architecture, and instance organoid segmentation using a Mask R-CNN (MRCNN) architecture. For the latter, we compared model performance after initializing network weights in three different ways: randomly, using ResNet-50 weights pre-trained on the COCO dataset, and using ResUNet weights pre-trained on organoid images. Using ResUNet or randomly initializing MRCNN backbone weights provided improved semantic segmentation compared to using precomputed weights from COCO or ResUNet, or to using the CellProfiler workflow. Conversely, using precomputed weights to initialize MRCNN provided better instance segmentation accuracy and sensitivity than random initialization. Our findings provide a basis for automated segmentation of organoids with convolutional neural networks, to aid in high throughput screening for compounds relevant to renal phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青筠发布了新的文献求助10
刚刚
阳光的小笼包完成签到,获得积分10
刚刚
XU2025完成签到 ,获得积分10
1秒前
汉堡包应助梦曼采纳,获得10
1秒前
4秒前
嘻嘻完成签到 ,获得积分10
4秒前
如梦如画发布了新的文献求助10
6秒前
CipherSage应助wangjq采纳,获得10
6秒前
6秒前
7秒前
8秒前
8秒前
艺馨完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
白子双完成签到,获得积分10
10秒前
web1032020297完成签到,获得积分10
10秒前
研友_LX66qZ完成签到,获得积分10
11秒前
李曾文完成签到,获得积分10
11秒前
xyrt发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
小乔发布了新的文献求助10
12秒前
13秒前
施宇宙发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
nn完成签到,获得积分10
15秒前
Orange应助lynn采纳,获得30
16秒前
小蘑菇应助迷路的初柔采纳,获得10
16秒前
LAN发布了新的文献求助10
17秒前
鑫渊完成签到,获得积分10
17秒前
18秒前
lycoris发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492