HNet-DNN: Inferring New Drug–Disease Associations with Deep Neural Network Based on Heterogeneous Network Features

过度拟合 人工神经网络 计算机科学 药物重新定位 药物发现 异构网络 人工智能 药品 相似性(几何) 串联(数学) 机器学习 生物信息学 医学 生物 数学 电信 无线网络 组合数学 图像(数学) 精神科 无线
作者
Hui Liu,Wenhao Zhang,Yinglong Song,Lei Deng,Shuigeng Zhou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (4): 2367-2376 被引量:25
标识
DOI:10.1021/acs.jcim.9b01008
摘要

Drug research and development is a time-consuming and high-cost task, pressing an urgent demand to identify novel indications of approved drugs, referred to as drug repositioning, which provides an economical and efficient way for drug discovery. With increasing volumes of large-scale chemical, genomic, and pharmacological data sets generated by the high-throughput technique, it is crucial to develop systematic and rational computational approaches to identify new indications of approved drugs. In this paper, we introduce HNet-DNN, which utilizes a deep neural network (DNN), to predict new drug–disease associations based on the features extracted from the drug–disease heterogeneous network. Instead of the straightforward concatenation of chemical and phenotypic features as the input of DNN, we used these raw features of drugs and diseases to construct a drug–drug similarity network and a disease–disease similarity network, and then built a drug–disease heterogeneous network by integrating known drug–disease associations. Subsequently, we extracted topological features for drug–disease associations from the heterogeneous network and used them to train a DNN model. Our intensive performance evaluations demonstrated that HNet-DNN effectively exploits the features of the heterogeneous network to boost the predictive performance of drug–disease associations. Compared with a couple of typical classifiers and competitive approaches, our method not only achieved state-of-the-art performance but also effectively alleviated the overfitting problem. Moreover, we ran HNet-DNN to predict new drug–disease associations and carried out case studies to verify the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怦怦应助忐忑的傲菡采纳,获得10
1秒前
怦怦应助忐忑的傲菡采纳,获得10
1秒前
xin完成签到,获得积分10
1秒前
mjj发布了新的文献求助10
3秒前
大约在冬季完成签到,获得积分10
3秒前
Labubu关注了科研通微信公众号
3秒前
韦明凯完成签到,获得积分10
4秒前
4秒前
zhao发布了新的文献求助10
4秒前
Joe完成签到,获得积分10
4秒前
5秒前
5秒前
lalala应助xxx采纳,获得10
6秒前
7秒前
毛豆应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
冯月应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
英姑应助dou采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
huo应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
毛豆应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
冷傲静竹应助科研通管家采纳,获得20
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
王算法完成签到,获得积分10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308852
求助须知:如何正确求助?哪些是违规求助? 2942301
关于积分的说明 8507956
捐赠科研通 2617252
什么是DOI,文献DOI怎么找? 1430026
科研通“疑难数据库(出版商)”最低求助积分说明 663984
邀请新用户注册赠送积分活动 649215