HNet-DNN: Inferring New Drug–Disease Associations with Deep Neural Network Based on Heterogeneous Network Features

过度拟合 人工神经网络 计算机科学 药物重新定位 药物发现 异构网络 人工智能 药品 相似性(几何) 串联(数学) 机器学习 生物信息学 医学 生物 数学 电信 无线网络 图像(数学) 组合数学 精神科 无线
作者
Hui Liu,Wenhao Zhang,Yinglong Song,Lei Deng,Shuigeng Zhou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (4): 2367-2376 被引量:35
标识
DOI:10.1021/acs.jcim.9b01008
摘要

Drug research and development is a time-consuming and high-cost task, pressing an urgent demand to identify novel indications of approved drugs, referred to as drug repositioning, which provides an economical and efficient way for drug discovery. With increasing volumes of large-scale chemical, genomic, and pharmacological data sets generated by the high-throughput technique, it is crucial to develop systematic and rational computational approaches to identify new indications of approved drugs. In this paper, we introduce HNet-DNN, which utilizes a deep neural network (DNN), to predict new drug–disease associations based on the features extracted from the drug–disease heterogeneous network. Instead of the straightforward concatenation of chemical and phenotypic features as the input of DNN, we used these raw features of drugs and diseases to construct a drug–drug similarity network and a disease–disease similarity network, and then built a drug–disease heterogeneous network by integrating known drug–disease associations. Subsequently, we extracted topological features for drug–disease associations from the heterogeneous network and used them to train a DNN model. Our intensive performance evaluations demonstrated that HNet-DNN effectively exploits the features of the heterogeneous network to boost the predictive performance of drug–disease associations. Compared with a couple of typical classifiers and competitive approaches, our method not only achieved state-of-the-art performance but also effectively alleviated the overfitting problem. Moreover, we ran HNet-DNN to predict new drug–disease associations and carried out case studies to verify the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大魔王完成签到,获得积分10
刚刚
情怀应助冷酷的寒天采纳,获得30
刚刚
戴景轩发布了新的文献求助10
1秒前
1秒前
毋意发布了新的文献求助10
1秒前
Peter发布了新的文献求助10
2秒前
XUXU发布了新的文献求助10
2秒前
明月清风完成签到,获得积分10
2秒前
11发布了新的文献求助10
3秒前
mutong发布了新的文献求助10
5秒前
PSA发布了新的文献求助30
5秒前
5秒前
qiqibaby发布了新的文献求助10
6秒前
2389937250完成签到,获得积分10
6秒前
7秒前
情怀应助Ha7采纳,获得10
7秒前
解语花发布了新的文献求助10
9秒前
cheng发布了新的文献求助10
9秒前
思源应助贝博拉采纳,获得10
10秒前
嘿嘿发布了新的文献求助10
10秒前
勤学勤积累完成签到,获得积分10
11秒前
11秒前
Ava应助解语花采纳,获得30
13秒前
13秒前
羽博韵潇发布了新的文献求助10
13秒前
13秒前
思源应助XUXU采纳,获得10
15秒前
hui完成签到,获得积分10
15秒前
lqhccww发布了新的文献求助10
16秒前
Infinit完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
medai发布了新的文献求助10
17秒前
乱七八糟数学好完成签到,获得积分10
18秒前
sube完成签到 ,获得积分10
18秒前
Kevin发布了新的文献求助10
18秒前
浮游应助Jimmy Ko采纳,获得10
19秒前
标致雨寒完成签到,获得积分20
19秒前
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569810
求助须知:如何正确求助?哪些是违规求助? 4655144
关于积分的说明 14710842
捐赠科研通 4596139
什么是DOI,文献DOI怎么找? 2522284
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464032