HNet-DNN: Inferring New Drug–Disease Associations with Deep Neural Network Based on Heterogeneous Network Features

过度拟合 人工神经网络 计算机科学 药物重新定位 药物发现 异构网络 人工智能 药品 相似性(几何) 串联(数学) 机器学习 生物信息学 医学 生物 数学 电信 无线网络 图像(数学) 组合数学 精神科 无线
作者
Hui Liu,Wenhao Zhang,Yinglong Song,Lei Deng,Shuigeng Zhou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (4): 2367-2376 被引量:33
标识
DOI:10.1021/acs.jcim.9b01008
摘要

Drug research and development is a time-consuming and high-cost task, pressing an urgent demand to identify novel indications of approved drugs, referred to as drug repositioning, which provides an economical and efficient way for drug discovery. With increasing volumes of large-scale chemical, genomic, and pharmacological data sets generated by the high-throughput technique, it is crucial to develop systematic and rational computational approaches to identify new indications of approved drugs. In this paper, we introduce HNet-DNN, which utilizes a deep neural network (DNN), to predict new drug–disease associations based on the features extracted from the drug–disease heterogeneous network. Instead of the straightforward concatenation of chemical and phenotypic features as the input of DNN, we used these raw features of drugs and diseases to construct a drug–drug similarity network and a disease–disease similarity network, and then built a drug–disease heterogeneous network by integrating known drug–disease associations. Subsequently, we extracted topological features for drug–disease associations from the heterogeneous network and used them to train a DNN model. Our intensive performance evaluations demonstrated that HNet-DNN effectively exploits the features of the heterogeneous network to boost the predictive performance of drug–disease associations. Compared with a couple of typical classifiers and competitive approaches, our method not only achieved state-of-the-art performance but also effectively alleviated the overfitting problem. Moreover, we ran HNet-DNN to predict new drug–disease associations and carried out case studies to verify the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YoungLee发布了新的文献求助20
1秒前
CodeCraft应助drzz采纳,获得10
1秒前
1秒前
bbh完成签到,获得积分20
1秒前
归尘发布了新的文献求助30
2秒前
脑洞疼应助sa采纳,获得10
2秒前
十七发布了新的文献求助10
2秒前
瞬间发布了新的文献求助10
4秒前
善学以致用应助KK采纳,获得10
5秒前
黑桃Q发布了新的文献求助10
5秒前
6秒前
FashionBoy应助认真初之采纳,获得10
9秒前
吴子鹏完成签到,获得积分10
9秒前
风清扬应助范范采纳,获得10
10秒前
茹茹完成签到,获得积分10
10秒前
11秒前
xzby发布了新的文献求助10
11秒前
陶醉世德完成签到,获得积分10
11秒前
猪猪hero应助清神安采纳,获得10
12秒前
13秒前
Rondab应助幸福大白采纳,获得30
14秒前
孙福禄应助LEOhard采纳,获得10
15秒前
enchanted完成签到,获得积分10
19秒前
FashionBoy应助机智的水风采纳,获得10
19秒前
忐忑的麦片完成签到,获得积分10
20秒前
852应助Liolsy采纳,获得10
20秒前
如此这般关注了科研通微信公众号
21秒前
爆米花应助Zhou采纳,获得10
21秒前
汤成莉完成签到 ,获得积分10
21秒前
Rondab应助幸福大白采纳,获得30
22秒前
科目三应助陈曦采纳,获得10
23秒前
大鱼应助好好好采纳,获得10
23秒前
enchanted发布了新的文献求助10
23秒前
24秒前
24秒前
26秒前
27秒前
小鼠星球完成签到,获得积分20
27秒前
黑桃Q完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176