HNet-DNN: Inferring New Drug–Disease Associations with Deep Neural Network Based on Heterogeneous Network Features

过度拟合 人工神经网络 计算机科学 药物重新定位 药物发现 异构网络 人工智能 药品 相似性(几何) 串联(数学) 机器学习 生物信息学 医学 生物 数学 电信 无线网络 图像(数学) 组合数学 精神科 无线
作者
Hui Liu,Wenhao Zhang,Yinglong Song,Lei Deng,Shuigeng Zhou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (4): 2367-2376 被引量:33
标识
DOI:10.1021/acs.jcim.9b01008
摘要

Drug research and development is a time-consuming and high-cost task, pressing an urgent demand to identify novel indications of approved drugs, referred to as drug repositioning, which provides an economical and efficient way for drug discovery. With increasing volumes of large-scale chemical, genomic, and pharmacological data sets generated by the high-throughput technique, it is crucial to develop systematic and rational computational approaches to identify new indications of approved drugs. In this paper, we introduce HNet-DNN, which utilizes a deep neural network (DNN), to predict new drug–disease associations based on the features extracted from the drug–disease heterogeneous network. Instead of the straightforward concatenation of chemical and phenotypic features as the input of DNN, we used these raw features of drugs and diseases to construct a drug–drug similarity network and a disease–disease similarity network, and then built a drug–disease heterogeneous network by integrating known drug–disease associations. Subsequently, we extracted topological features for drug–disease associations from the heterogeneous network and used them to train a DNN model. Our intensive performance evaluations demonstrated that HNet-DNN effectively exploits the features of the heterogeneous network to boost the predictive performance of drug–disease associations. Compared with a couple of typical classifiers and competitive approaches, our method not only achieved state-of-the-art performance but also effectively alleviated the overfitting problem. Moreover, we ran HNet-DNN to predict new drug–disease associations and carried out case studies to verify the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助烟酒不离生采纳,获得10
1秒前
8R60d8应助烟酒不离生采纳,获得10
1秒前
8R60d8应助烟酒不离生采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
橡树果完成签到 ,获得积分10
3秒前
完美小蘑菇应助潇湘雪月采纳,获得10
3秒前
张wx_100完成签到,获得积分10
5秒前
chenjingjing发布了新的文献求助10
5秒前
8秒前
illi发布了新的文献求助10
9秒前
11秒前
12秒前
Ava应助大青山采纳,获得10
13秒前
13秒前
2116564发布了新的文献求助10
15秒前
16秒前
婵婵发布了新的文献求助10
17秒前
ASZXDW发布了新的文献求助20
17秒前
18秒前
Orange应助1235656646采纳,获得10
19秒前
2311发布了新的文献求助10
20秒前
EDSS完成签到,获得积分10
20秒前
勤奋大地完成签到,获得积分10
22秒前
24秒前
2311完成签到,获得积分20
27秒前
共享精神应助小木安华采纳,获得10
29秒前
q1356478314应助2116564采纳,获得10
29秒前
29秒前
刘佳冉完成签到,获得积分10
29秒前
星期八发布了新的文献求助10
30秒前
万能图书馆应助潇湘雪月采纳,获得10
32秒前
黑石完成签到,获得积分10
32秒前
zpc发布了新的文献求助10
33秒前
小郭完成签到,获得积分10
34秒前
36秒前
36秒前
38秒前
文静山兰完成签到 ,获得积分10
38秒前
完美世界应助李嘉欣采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174