亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges.

电流(流体) 降级(电信) 材料科学
作者
Kaichao Yang,Min Ji,Bin Liang,Yingxin Zhao,Siyuan Zhai,Ma Zehao,Yang Zhifan
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:398: 122892-122892 被引量:23
标识
DOI:10.1016/j.jhazmat.2020.122892
摘要

Abstract Monoaromatic compounds (MACs) are typical refractory organic pollutants which are existing widely in various environments. Biodegradation strategies are benign while the key issue is the sustainable supply of electron acceptors/donors. Bioelectrochemical system (BES) shows great potential in this field for providing continuous electrons for MACs degradation. Phenol and BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) can utilize anode to enhance oxidative degradation, while chlorophenols, nitrobenzene and antibiotic chloramphenicol (CAP) can be efficiently reduced to less-toxic products by the cathode. However, there still have several aspects need to be improved including the scale, electricity output and MACs degradation efficiency of BES. This review provides a comprehensive summary on the BES degradation of MACs, and discusses the advantages, future challenges and perspectives for BES development. Instead of traditional expensive dual-chamber configurations for MACs degradation, new single-chamber membrane-less reactors are cost-effective and the hydrogen generated from cathodes may promote the anode degradation. Electrode materials are the key to improve BES performance, approaches to increase the biofilm enrichment and conductivity of materials have been discussed, including surface modification as well as composition of carbon and metal-based materials. Besides, the development and introduction of functional microbes and redox mediators, participation of sulfur/hydrogen cycling may further enhance the BES versatility. Some critical parameters, such as the applied voltage and conductivity, can also affect the BES performance, which shouldn’t be overlooked. Moreover, sequential cathode-anode cascaded mode is a promising strategy for MACs complete mineralization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
silence完成签到 ,获得积分10
8秒前
8秒前
布吉岛应助科研通管家采纳,获得10
9秒前
9秒前
所所应助科研通管家采纳,获得10
9秒前
10秒前
11秒前
华仔应助结实的小蚂蚁采纳,获得10
12秒前
炙热雅琴发布了新的文献求助10
15秒前
科研通AI6应助炙热雅琴采纳,获得10
19秒前
20秒前
小艺完成签到,获得积分20
21秒前
小艺发布了新的文献求助10
27秒前
香蕉觅云应助Dunley采纳,获得10
30秒前
37秒前
39秒前
crazykite完成签到,获得积分10
39秒前
Dunley发布了新的文献求助10
44秒前
50秒前
53秒前
mc小胖羊发布了新的文献求助10
59秒前
赘婿应助tracer526采纳,获得10
1分钟前
tracer526发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CodeCraft应助李楠采纳,获得10
1分钟前
Chris完成签到 ,获得积分0
1分钟前
Dunley完成签到,获得积分20
1分钟前
CipherSage应助吴浣采纳,获得10
1分钟前
mc小胖羊发布了新的文献求助10
2分钟前
披萨心肠完成签到 ,获得积分10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
Yini应助科研通管家采纳,获得40
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
木马上市完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418317
求助须知:如何正确求助?哪些是违规求助? 4534007
关于积分的说明 14143010
捐赠科研通 4450303
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432905
关于科研通互助平台的介绍 1410263