已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges.

电流(流体) 降级(电信) 材料科学
作者
Kaichao Yang,Min Ji,Bin Liang,Yingxin Zhao,Siyuan Zhai,Ma Zehao,Yang Zhifan
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:398: 122892-122892 被引量:23
标识
DOI:10.1016/j.jhazmat.2020.122892
摘要

Abstract Monoaromatic compounds (MACs) are typical refractory organic pollutants which are existing widely in various environments. Biodegradation strategies are benign while the key issue is the sustainable supply of electron acceptors/donors. Bioelectrochemical system (BES) shows great potential in this field for providing continuous electrons for MACs degradation. Phenol and BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) can utilize anode to enhance oxidative degradation, while chlorophenols, nitrobenzene and antibiotic chloramphenicol (CAP) can be efficiently reduced to less-toxic products by the cathode. However, there still have several aspects need to be improved including the scale, electricity output and MACs degradation efficiency of BES. This review provides a comprehensive summary on the BES degradation of MACs, and discusses the advantages, future challenges and perspectives for BES development. Instead of traditional expensive dual-chamber configurations for MACs degradation, new single-chamber membrane-less reactors are cost-effective and the hydrogen generated from cathodes may promote the anode degradation. Electrode materials are the key to improve BES performance, approaches to increase the biofilm enrichment and conductivity of materials have been discussed, including surface modification as well as composition of carbon and metal-based materials. Besides, the development and introduction of functional microbes and redox mediators, participation of sulfur/hydrogen cycling may further enhance the BES versatility. Some critical parameters, such as the applied voltage and conductivity, can also affect the BES performance, which shouldn’t be overlooked. Moreover, sequential cathode-anode cascaded mode is a promising strategy for MACs complete mineralization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研苦行僧采纳,获得10
1秒前
平常的凡白完成签到 ,获得积分10
2秒前
wanci应助热情醉山采纳,获得10
3秒前
leave完成签到,获得积分10
3秒前
米花完成签到 ,获得积分10
5秒前
5秒前
平平完成签到,获得积分10
5秒前
普外科老白完成签到,获得积分10
6秒前
Chloe完成签到 ,获得积分10
6秒前
kai chen完成签到 ,获得积分0
7秒前
7秒前
李李原上草完成签到 ,获得积分10
8秒前
zzyh307完成签到 ,获得积分0
8秒前
9秒前
10秒前
Xiaoxiao应助窦慕卉采纳,获得10
10秒前
默默尔安完成签到 ,获得积分10
11秒前
科研小白完成签到,获得积分10
13秒前
平平发布了新的文献求助10
13秒前
14秒前
15秒前
芳华如梦完成签到 ,获得积分10
18秒前
tdd发布了新的文献求助50
19秒前
孙行行完成签到,获得积分10
19秒前
19秒前
Willy完成签到,获得积分10
20秒前
黄星星完成签到 ,获得积分10
21秒前
NiceSunnyDay完成签到 ,获得积分10
23秒前
杰尼龟发布了新的文献求助10
24秒前
紫薯球完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
王淇茜完成签到,获得积分10
31秒前
刻苦黎云完成签到,获得积分10
31秒前
耍酷鼠标完成签到 ,获得积分0
33秒前
杰尼龟完成签到,获得积分10
33秒前
cc发布了新的文献求助10
33秒前
仁爱的秀珍菇完成签到,获得积分10
34秒前
35秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491218
求助须知:如何正确求助?哪些是违规求助? 3077861
关于积分的说明 9150845
捐赠科研通 2770369
什么是DOI,文献DOI怎么找? 1520305
邀请新用户注册赠送积分活动 704552
科研通“疑难数据库(出版商)”最低求助积分说明 702253