Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges.

电流(流体) 降级(电信) 材料科学
作者
Kaichao Yang,Min Ji,Bin Liang,Yingxin Zhao,Siyuan Zhai,Ma Zehao,Yang Zhifan
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:398: 122892-122892 被引量:23
标识
DOI:10.1016/j.jhazmat.2020.122892
摘要

Abstract Monoaromatic compounds (MACs) are typical refractory organic pollutants which are existing widely in various environments. Biodegradation strategies are benign while the key issue is the sustainable supply of electron acceptors/donors. Bioelectrochemical system (BES) shows great potential in this field for providing continuous electrons for MACs degradation. Phenol and BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) can utilize anode to enhance oxidative degradation, while chlorophenols, nitrobenzene and antibiotic chloramphenicol (CAP) can be efficiently reduced to less-toxic products by the cathode. However, there still have several aspects need to be improved including the scale, electricity output and MACs degradation efficiency of BES. This review provides a comprehensive summary on the BES degradation of MACs, and discusses the advantages, future challenges and perspectives for BES development. Instead of traditional expensive dual-chamber configurations for MACs degradation, new single-chamber membrane-less reactors are cost-effective and the hydrogen generated from cathodes may promote the anode degradation. Electrode materials are the key to improve BES performance, approaches to increase the biofilm enrichment and conductivity of materials have been discussed, including surface modification as well as composition of carbon and metal-based materials. Besides, the development and introduction of functional microbes and redox mediators, participation of sulfur/hydrogen cycling may further enhance the BES versatility. Some critical parameters, such as the applied voltage and conductivity, can also affect the BES performance, which shouldn’t be overlooked. Moreover, sequential cathode-anode cascaded mode is a promising strategy for MACs complete mineralization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss完成签到,获得积分10
刚刚
万能图书馆应助虹雨采纳,获得10
刚刚
刚刚
复杂的盼柳完成签到,获得积分10
刚刚
今后应助mmc采纳,获得10
1秒前
冷冷发布了新的文献求助10
2秒前
甜美香之完成签到 ,获得积分10
2秒前
2秒前
友好的尔容完成签到,获得积分10
2秒前
orixero应助arniu2008采纳,获得20
2秒前
2秒前
lss发布了新的文献求助10
2秒前
曹丶丶完成签到,获得积分10
2秒前
英姑应助最棒哒采纳,获得10
3秒前
令和发布了新的文献求助10
3秒前
shiyin发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
当时的发布了新的文献求助10
5秒前
wrx发布了新的文献求助10
5秒前
小怪兽完成签到,获得积分10
6秒前
ZiJay发布了新的文献求助10
6秒前
搞怪的萃完成签到,获得积分10
6秒前
7秒前
MAXDONE发布了新的文献求助10
7秒前
赘婿应助开心就好采纳,获得10
7秒前
7秒前
8秒前
GongZH完成签到,获得积分20
8秒前
太菜了发布了新的文献求助10
8秒前
bkagyin应助elegg采纳,获得10
8秒前
JamesPei应助stone采纳,获得10
9秒前
xingfangshu发布了新的文献求助10
9秒前
哈哈哈发布了新的文献求助10
9秒前
傲娇的项链完成签到,获得积分10
9秒前
梅夕阳发布了新的文献求助10
10秒前
小易发布了新的文献求助10
10秒前
脑洞疼应助wuxunxun2015采纳,获得10
10秒前
罗dd完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613147
求助须知:如何正确求助?哪些是违规求助? 4698337
关于积分的说明 14897304
捐赠科研通 4735098
什么是DOI,文献DOI怎么找? 2546853
邀请新用户注册赠送积分活动 1510872
关于科研通互助平台的介绍 1473504