化学工程
血小板
自愈水凝胶
明胶
血小板活化
戊二醛
控制释放
材料科学
核化学
作者
M. Nivedhitha Sundaram,Ullas Mony,Praveen Kerala Varma,Jayakumar Rangasamy
标识
DOI:10.1016/j.carbpol.2021.117634
摘要
Abstract Chitosan (Cs) as a hemostatic agent has been in use to control hemorrage. Composite hydrogel formed by entrapment of vasoconstrictor-potassium aluminium sulfate (0.25 %PA) and coagulation activator-calcium chloride (0.25 %Ca) into Cs (2 %) hydrogel would enhance the hemostatic property of Cs. In this work, the prepared composite hydrogel was injectable, shear thinning, cyto and hemocompatible. The 2 %Cs-0.25 %PA-0.25 %Ca composite hydrogel caused rapid blood clotting by accelerating RBC/platelet aggregation and activation of the coagulation cascade. Further, in vivo studies on rat liver and femoral artery hemorrage model showed the efficiency of 2 %Cs-0.25 %PA-0.25 %Ca composite hydrogel to achieve hemostasis in a shorter time (20 ± 10 s, 105 ± 31 s) than commercial hemostatic agents-Fibrin sealant (77 ± 26 s, 204 ± 58 s) and Floseal (76 ± 15 s, 218 ± 46 s). In in vivo toxicological study, composite hydrogel showed material retention even after 8 weeks post-surgery, therefore excess hydrogel should be irrigated from site of application. This prepared composite hydrogel based hemostatic agent has potential application in low pressure bleeding sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI