Search Personalization Using Machine Learning

个性化 计算机科学 可扩展性 排名(信息检索) 集合(抽象数据类型) 情报检索 学习排名 机器学习 数据库 万维网 程序设计语言
作者
Hema Yoganarasimhan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (3): 1045-1070 被引量:141
标识
DOI:10.1287/mnsc.2018.3255
摘要

Firms typically use query-based search to help consumers find information/products on their websites. We consider the problem of optimally ranking a set of results shown in response to a query. We propose a personalized ranking mechanism based on a user’s search and click history. Our machine-learning framework consists of three modules: (a) feature generation, (b) normalized discounted cumulative gain–based LambdaMART algorithm, and (c) feature selection wrapper. We deploy our framework on large-scale data from a leading search engine using Amazon EC2 servers and present results from a series of counterfactual analyses. We find that personalization improves clicks to the top position by 3.5% and reduces the average error in rank of a click by 9.43% over the baseline. Personalization based on short-term history or within-session behavior is shown to be less valuable than long-term or across-session personalization. We find that there is significant heterogeneity in returns to personalization as a function of user history and query type. The quality of personalized results increases monotonically with the length of a user’s history. Queries can be classified based on user intent as transactional, informational, or navigational, and the former two benefit more from personalization. We also find that returns to personalization are negatively correlated with a query’s past average performance. Finally, we demonstrate the scalability of our framework and derive the set of optimal features that maximizes accuracy while minimizing computing time. This paper was accepted by Juanjuan Zhang, marketing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Z小姐采纳,获得10
刚刚
茶凉人散完成签到,获得积分10
1秒前
周淼完成签到,获得积分10
1秒前
蒸小征发布了新的文献求助10
2秒前
奋斗的朋友完成签到 ,获得积分10
2秒前
善学以致用应助popdragon采纳,获得10
3秒前
科研通AI6.1应助烂漫母鸡采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
零零完成签到,获得积分10
5秒前
茶凉人散发布了新的文献求助10
6秒前
zmmm完成签到,获得积分10
6秒前
宇智波张三完成签到,获得积分10
6秒前
火箭完成签到,获得积分10
7秒前
7秒前
FashionBoy应助Jayson采纳,获得10
8秒前
充电宝应助热情笑旋采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
晓磊发布了新的文献求助30
12秒前
12秒前
Qwering应助Linyi采纳,获得30
13秒前
13秒前
15秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
小先生发布了新的文献求助10
23秒前
欣喜安蕾完成签到,获得积分10
24秒前
25秒前
贪玩若剑完成签到 ,获得积分10
25秒前
大懒虫发布了新的文献求助10
25秒前
26秒前
在水一方应助追寻的从云采纳,获得10
26秒前
26秒前
萌only发布了新的文献求助10
27秒前
27秒前
28秒前
Singularity应助一只小原采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777833
求助须知:如何正确求助?哪些是违规求助? 5635925
关于积分的说明 15446909
捐赠科研通 4909743
什么是DOI,文献DOI怎么找? 2641858
邀请新用户注册赠送积分活动 1589781
关于科研通互助平台的介绍 1544290