Search Personalization Using Machine Learning

个性化 计算机科学 可扩展性 排名(信息检索) 集合(抽象数据类型) 情报检索 学习排名 机器学习 数据库 万维网 程序设计语言
作者
Hema Yoganarasimhan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (3): 1045-1070 被引量:141
标识
DOI:10.1287/mnsc.2018.3255
摘要

Firms typically use query-based search to help consumers find information/products on their websites. We consider the problem of optimally ranking a set of results shown in response to a query. We propose a personalized ranking mechanism based on a user’s search and click history. Our machine-learning framework consists of three modules: (a) feature generation, (b) normalized discounted cumulative gain–based LambdaMART algorithm, and (c) feature selection wrapper. We deploy our framework on large-scale data from a leading search engine using Amazon EC2 servers and present results from a series of counterfactual analyses. We find that personalization improves clicks to the top position by 3.5% and reduces the average error in rank of a click by 9.43% over the baseline. Personalization based on short-term history or within-session behavior is shown to be less valuable than long-term or across-session personalization. We find that there is significant heterogeneity in returns to personalization as a function of user history and query type. The quality of personalized results increases monotonically with the length of a user’s history. Queries can be classified based on user intent as transactional, informational, or navigational, and the former two benefit more from personalization. We also find that returns to personalization are negatively correlated with a query’s past average performance. Finally, we demonstrate the scalability of our framework and derive the set of optimal features that maximizes accuracy while minimizing computing time. This paper was accepted by Juanjuan Zhang, marketing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jackie_Li完成签到,获得积分10
刚刚
共享精神应助婷儿采纳,获得10
刚刚
丰富的比巴卜关注了科研通微信公众号
1秒前
大力帽子应助石武采纳,获得10
1秒前
灵犀完成签到,获得积分10
2秒前
2秒前
沉默海完成签到 ,获得积分10
2秒前
CodeCraft应助吾身无拘采纳,获得30
3秒前
mmyhn发布了新的文献求助10
3秒前
Alkaid完成签到 ,获得积分10
3秒前
orixero应助momo采纳,获得10
4秒前
尊敬的凌晴完成签到 ,获得积分10
4秒前
爱笑子默发布了新的文献求助10
4秒前
4秒前
4秒前
扶子茶完成签到,获得积分10
5秒前
凡凡发布了新的文献求助10
5秒前
yoke完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
wzy发布了新的文献求助10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
黑夜无头骑士完成签到 ,获得积分10
7秒前
spc68应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
大个应助搞怪不斜采纳,获得10
8秒前
8秒前
zgrmws应助金长慧采纳,获得50
8秒前
8秒前
朝暮应助科研通管家采纳,获得10
8秒前
rebubu应助科研通管家采纳,获得10
8秒前
安然应助科研通管家采纳,获得10
8秒前
8秒前
ghost100应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406