Search Personalization Using Machine Learning

个性化 计算机科学 可扩展性 排名(信息检索) 集合(抽象数据类型) 情报检索 学习排名 机器学习 数据库 万维网 程序设计语言
作者
Hema Yoganarasimhan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (3): 1045-1070 被引量:141
标识
DOI:10.1287/mnsc.2018.3255
摘要

Firms typically use query-based search to help consumers find information/products on their websites. We consider the problem of optimally ranking a set of results shown in response to a query. We propose a personalized ranking mechanism based on a user’s search and click history. Our machine-learning framework consists of three modules: (a) feature generation, (b) normalized discounted cumulative gain–based LambdaMART algorithm, and (c) feature selection wrapper. We deploy our framework on large-scale data from a leading search engine using Amazon EC2 servers and present results from a series of counterfactual analyses. We find that personalization improves clicks to the top position by 3.5% and reduces the average error in rank of a click by 9.43% over the baseline. Personalization based on short-term history or within-session behavior is shown to be less valuable than long-term or across-session personalization. We find that there is significant heterogeneity in returns to personalization as a function of user history and query type. The quality of personalized results increases monotonically with the length of a user’s history. Queries can be classified based on user intent as transactional, informational, or navigational, and the former two benefit more from personalization. We also find that returns to personalization are negatively correlated with a query’s past average performance. Finally, we demonstrate the scalability of our framework and derive the set of optimal features that maximizes accuracy while minimizing computing time. This paper was accepted by Juanjuan Zhang, marketing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小肥羊完成签到,获得积分10
刚刚
刚刚
lumos完成签到,获得积分20
刚刚
345发布了新的文献求助10
刚刚
LW完成签到,获得积分20
1秒前
1秒前
Neehi发布了新的文献求助10
1秒前
铱凡完成签到,获得积分10
1秒前
2秒前
zou252完成签到 ,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
3秒前
badgerwithfisher完成签到,获得积分10
3秒前
4秒前
打打应助冷彬采纳,获得10
4秒前
4秒前
Rewi_Zhang完成签到,获得积分10
4秒前
5秒前
6秒前
左丘世立发布了新的文献求助10
6秒前
勤恳的糖豆完成签到,获得积分10
6秒前
王丽雅完成签到,获得积分20
7秒前
所所应助Alisa采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
刻苦的安白完成签到,获得积分10
8秒前
8秒前
cl发布了新的文献求助30
8秒前
李健应助顽强的娃娃采纳,获得10
8秒前
8秒前
mmmooo完成签到,获得积分10
9秒前
9秒前
9秒前
冬灵完成签到,获得积分10
9秒前
Qingchen发布了新的文献求助10
9秒前
10秒前
seven发布了新的文献求助10
10秒前
10秒前
11秒前
甜美孤云发布了新的文献求助10
11秒前
laj完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485