Search Personalization Using Machine Learning

个性化 计算机科学 可扩展性 排名(信息检索) 集合(抽象数据类型) 情报检索 学习排名 机器学习 数据库 万维网 程序设计语言
作者
Hema Yoganarasimhan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (3): 1045-1070 被引量:95
标识
DOI:10.1287/mnsc.2018.3255
摘要

Firms typically use query-based search to help consumers find information/products on their websites. We consider the problem of optimally ranking a set of results shown in response to a query. We propose a personalized ranking mechanism based on a user’s search and click history. Our machine-learning framework consists of three modules: (a) feature generation, (b) normalized discounted cumulative gain–based LambdaMART algorithm, and (c) feature selection wrapper. We deploy our framework on large-scale data from a leading search engine using Amazon EC2 servers and present results from a series of counterfactual analyses. We find that personalization improves clicks to the top position by 3.5% and reduces the average error in rank of a click by 9.43% over the baseline. Personalization based on short-term history or within-session behavior is shown to be less valuable than long-term or across-session personalization. We find that there is significant heterogeneity in returns to personalization as a function of user history and query type. The quality of personalized results increases monotonically with the length of a user’s history. Queries can be classified based on user intent as transactional, informational, or navigational, and the former two benefit more from personalization. We also find that returns to personalization are negatively correlated with a query’s past average performance. Finally, we demonstrate the scalability of our framework and derive the set of optimal features that maximizes accuracy while minimizing computing time. This paper was accepted by Juanjuan Zhang, marketing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到,获得积分10
刚刚
喜之郎完成签到,获得积分10
刚刚
刚刚
开心友儿完成签到,获得积分10
1秒前
lucas完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
全员CEO完成签到,获得积分10
2秒前
Pu Chunyi完成签到,获得积分10
3秒前
山月鹿发布了新的文献求助10
3秒前
4秒前
bzc完成签到,获得积分10
4秒前
勤劳元瑶完成签到,获得积分10
4秒前
缓慢的煎蛋完成签到,获得积分10
5秒前
SciGPT应助熬夜的桃子采纳,获得10
5秒前
奇怪的柒发布了新的文献求助20
6秒前
zhao完成签到 ,获得积分10
6秒前
零点起步完成签到,获得积分10
6秒前
研友_Z33zkZ发布了新的文献求助10
7秒前
两坨小腮红完成签到,获得积分10
7秒前
悲凉的老虎完成签到,获得积分10
8秒前
8秒前
小明同学完成签到,获得积分10
8秒前
微风打了烊完成签到 ,获得积分10
8秒前
Ava应助陶醉紫寒采纳,获得30
8秒前
酷酷的树叶完成签到 ,获得积分10
8秒前
wujiaoqian完成签到,获得积分10
8秒前
小王同学完成签到 ,获得积分10
9秒前
66m37完成签到,获得积分10
9秒前
huiseXT完成签到,获得积分10
9秒前
老实天真完成签到,获得积分10
9秒前
dypdyp应助xujy采纳,获得10
9秒前
钇铷完成签到,获得积分10
10秒前
呆萌的鼠标完成签到 ,获得积分0
11秒前
涂山白切鸡完成签到,获得积分10
12秒前
必毕业完成签到,获得积分10
12秒前
香辣脆皮坤完成签到,获得积分10
12秒前
alfredwu94完成签到,获得积分10
12秒前
Harry完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716