Selective Enhancement of Object Representations through Multisensory Integration

多传感器集成 分类 感觉系统 刺激(心理学) 心理学 对象(语法) 计算机科学 刺激形态 认知科学 沟通 认知心理学 人工智能
作者
David A. Tovar,Micah M. Murray,Mark T. Wallace
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:40 (29): 5604-5615 被引量:10
标识
DOI:10.1523/jneurosci.2139-19.2020
摘要

Objects are the fundamental building blocks of how we create a representation of the external world. One major distinction among objects is between those that are animate versus those that are inanimate. In addition, many objects are specified by more than a single sense, yet the nature by which multisensory objects are represented by the brain remains poorly understood. Using representational similarity analysis of male and female human EEG signals, we show enhanced encoding of audiovisual objects when compared with their corresponding visual and auditory objects. Surprisingly, we discovered that the often-found processing advantages for animate objects were not evident under multisensory conditions. This was due to a greater neural enhancement of inanimate objects—which are more weakly encoded under unisensory conditions. Further analysis showed that the selective enhancement of inanimate audiovisual objects corresponded with an increase in shared representations across brain areas, suggesting that the enhancement was mediated by multisensory integration. Moreover, a distance-to-bound analysis provided critical links between neural findings and behavior. Improvements in neural decoding at the individual exemplar level for audiovisual inanimate objects predicted reaction time differences between multisensory and unisensory presentations during a Go/No-Go animate categorization task. Links between neural activity and behavioral measures were most evident at intervals of 100–200 ms and 350–500 ms after stimulus presentation, corresponding to time periods associated with sensory evidence accumulation and decision-making, respectively. Collectively, these findings provide key insights into a fundamental process the brain uses to maximize the information it captures across sensory systems to perform object recognition. SIGNIFICANCE STATEMENT Our world is filled with ever-changing sensory information that we are able to seamlessly transform into a coherent and meaningful perceptual experience. We accomplish this feat by combining different stimulus features into objects. However, despite the fact that these features span multiple senses, little is known about how the brain combines the various forms of sensory information into object representations. Here, we used EEG and machine learning to study how the brain processes auditory, visual, and audiovisual objects. Surprisingly, we found that nonliving (i.e., inanimate) objects, which are more difficult to process with one sense alone, benefited the most from engaging multiple senses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MR完成签到,获得积分10
5秒前
杜彦君发布了新的文献求助10
6秒前
甜甜的小龙人完成签到,获得积分10
7秒前
喻箴完成签到,获得积分10
7秒前
7秒前
卜应完成签到,获得积分10
9秒前
10秒前
nicolasfugui完成签到 ,获得积分10
11秒前
冷静的访天完成签到 ,获得积分10
13秒前
13秒前
16秒前
fdwang完成签到 ,获得积分10
17秒前
CodeCraft应助杜彦君采纳,获得10
18秒前
ZXG完成签到,获得积分10
19秒前
大脚仙完成签到,获得积分10
20秒前
邱航完成签到,获得积分10
21秒前
mmyhn发布了新的文献求助10
22秒前
wangheng完成签到,获得积分10
22秒前
moyan完成签到 ,获得积分20
23秒前
23秒前
sunliying完成签到 ,获得积分10
23秒前
23秒前
杳鸢完成签到,获得积分10
25秒前
樊川发布了新的文献求助10
26秒前
27秒前
binz完成签到,获得积分10
27秒前
29秒前
tianxiadu完成签到,获得积分10
29秒前
Ouyang完成签到 ,获得积分10
33秒前
wodetaiyangLLL完成签到,获得积分10
34秒前
小海哥1990完成签到,获得积分10
34秒前
英俊的铭应助LL采纳,获得10
35秒前
华仔应助LL采纳,获得10
35秒前
九月发布了新的文献求助60
35秒前
赘婿应助菜菜Cc采纳,获得10
36秒前
anna完成签到,获得积分10
36秒前
36秒前
gavin完成签到 ,获得积分10
36秒前
闪耀星星发布了新的文献求助10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143739
求助须知:如何正确求助?哪些是违规求助? 2795236
关于积分的说明 7813804
捐赠科研通 2451222
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400