材料科学
阳极
法拉第效率
硅
电解质
锂(药物)
一氧化硅
阴极
纳米技术
化学工程
光电子学
电极
电气工程
医学
工程类
内分泌学
物理化学
化学
作者
Şahin Cangaz,Felix Hippauf,Florian Reuter,Susanne Doerfler,Thomas Abendroth,Holger Althues,Stefan Kaskel
标识
DOI:10.1002/aenm.202001320
摘要
Abstract All‐solid‐state batteries (ASSBs) with silicon anodes are promising candidates to overcome energy limitations of conventional lithium‐ion batteries. However, silicon undergoes severe volume changes during cycling leading to rapid degradation. In this study, a columnar silicon anode (col‐Si) fabricated by a scalable physical vapor deposition process (PVD) is integrated in all‐solid‐state batteries based on argyrodite‐type electrolyte (Li 6 PS 5 Cl, 3 mS cm −1 ) and Ni‐rich layered oxide cathodes (LiNi 0.9 Co 0.05 Mn 0.05 O 2 , NCM) with a high specific capacity (210 mAh g −1 ). The column structure exhibits a 1D breathing mechanism similar to lithium, which preserves the interface toward the electrolyte. Stable cycling is demonstrated for more than 100 cycles with a high coulombic efficiency (CE) of 99.7–99.9% in full cells with industrially relevant areal loadings of 3.5 mAh cm −2 , which is the highest value reported so far for ASSB full cells with silicon anodes. Impedance spectroscopy revealed that anode resistance is drastically reduced after first lithiation, which allows high charging currents of 0.9 mA cm −2 at room temperature without the occurrence of dendrites and short circuits. Finally, in‐operando monitoring of pouch cells gave valuable insights into the breathing behavior of the solid‐state cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI