溶解
锰
阴极
尖晶石
材料科学
衰退
锂(药物)
相(物质)
歧化
电池(电)
化学工程
阳极
相变
无机化学
化学物理
化学
电极
冶金
热力学
物理化学
物理
计算机科学
内分泌学
工程类
催化作用
功率(物理)
有机化学
电信
医学
解码方法
生物化学
作者
Tongchao Liu,Alvin Dai,Jun Lü,Yifei Yuan,Yinguo Xiao,Lei Yu,Matthew Li,Jihyeon Gim,Lu Ma,Jiajie Liu,Chun Zhan,Luxi Li,Jiaxin Zheng,Yang Ren,Tianpin Wu,Reza Shahbazian‐Yassar,Jianguo Wen,Feng Pan,Khalil Amine
标识
DOI:10.1038/s41467-019-12626-3
摘要
Abstract Historically long accepted to be the singular root cause of capacity fading, transition metal dissolution has been reported to severely degrade the anode. However, its impact on the cathode behavior remains poorly understood. Here we show the correlation between capacity fading and phase/surface stability of an LiMn 2 O 4 cathode. It is revealed that a combination of structural transformation and transition metal dissolution dominates the cathode capacity fading. LiMn 2 O 4 exhibits irreversible phase transitions driven by manganese(III) disproportionation and Jahn-Teller distortion, which in conjunction with particle cracks results in serious manganese dissolution. Meanwhile, fast manganese dissolution in turn triggers irreversible structural evolution, and as such, forms a detrimental cycle constantly consuming active cathode components. Furthermore, lithium-rich LiMn 2 O 4 with lithium/manganese disorder and surface reconstruction could effectively suppress the irreversible phase transition and manganese dissolution. These findings close the loop of understanding capacity fading mechanisms and allow for development of longer life batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI