A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data

计算机科学 人类连接体项目 深度学习 人工智能 功能磁共振成像 卷积神经网络 静息状态功能磁共振成像 图形 模式识别(心理学) 机器学习 功能连接 神经科学 理论计算机科学 心理学
作者
Tiago Azevedo,Alexander Campbell,Rafael Romero-García,Luca Passamonti,Richard A. I. Bethlehem,Píetro Lió,Nicola Toschi
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:79: 102471-102471 被引量:44
标识
DOI:10.1016/j.media.2022.102471
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) has been successfully employed to understand the organisation of the human brain. Typically, the brain is parcellated into regions of interest (ROIs) and modelled as a graph where each ROI represents a node and association measures between ROI-specific blood-oxygen-level-dependent (BOLD) time series are edges. Recently, graph neural networks (GNNs) have seen a surge in popularity due to their success in modelling unstructured relational data. The latest developments with GNNs, however, have not yet been fully exploited for the analysis of rs-fMRI data, particularly with regards to its spatio-temporal dynamics. In this paper, we present a novel deep neural network architecture which combines both GNNs and temporal convolutional networks (TCNs) in order to learn from both the spatial and temporal components of rs-fMRI data in an end-to-end fashion. In particular, this corresponds to intra-feature learning (i.e., learning temporal dynamics with TCNs) as well as inter-feature learning (i.e., leveraging interactions between ROI-wise dynamics with GNNs). We evaluate our model with an ablation study using 35,159 samples from the UK Biobank rs-fMRI database, as well as in the smaller Human Connectome Project (HCP) dataset, both in a unimodal and in a multimodal fashion. We also demonstrate that out architecture contains explainability-related features which easily map to realistic neurobiological insights. We suggest that this model could lay the groundwork for future deep learning architectures focused on leveraging the inherently and inextricably spatio-temporal nature of rs-fMRI data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的寒风应助小胖鱼采纳,获得10
1秒前
柠檬酸循环完成签到,获得积分10
2秒前
2秒前
xiaxia完成签到,获得积分10
3秒前
周冬华发布了新的文献求助10
3秒前
L3vine发布了新的文献求助10
4秒前
hhh完成签到 ,获得积分10
6秒前
脑洞疼应助穆亦擎采纳,获得10
7秒前
JamesPei应助科研牛马丫采纳,获得10
7秒前
zhenghua完成签到,获得积分20
9秒前
9秒前
10秒前
鱼人发布了新的文献求助10
10秒前
11秒前
朱权圣发布了新的文献求助30
12秒前
科研通AI5应助眼睛大平凡采纳,获得10
12秒前
碧蓝的睫毛完成签到,获得积分10
13秒前
Owen应助cnkly采纳,获得10
14秒前
bkagyin应助无名采纳,获得10
14秒前
ll发布了新的文献求助10
14秒前
kreatal发布了新的文献求助10
14秒前
15秒前
Ava应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
zoey应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
maox1aoxin应助科研通管家采纳,获得30
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
16秒前
Ly发布了新的文献求助10
19秒前
21秒前
科研通AI5应助NOT采纳,获得10
23秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
读者个体因素对汉语阅读中眼动行为的影响 710
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560229
求助须知:如何正确求助?哪些是违规求助? 3134388
关于积分的说明 9407260
捐赠科研通 2834527
什么是DOI,文献DOI怎么找? 1558164
邀请新用户注册赠送积分活动 727912
科研通“疑难数据库(出版商)”最低求助积分说明 716602