Automatic classification of informative laryngoscopic images using deep learning

人工智能 计算机科学 分类器(UML) 模式识别(心理学) 试验装置 卷积神经网络 超参数 精确性和召回率 学习迁移 F1得分
作者
Peter Yao,Dan Witte,Hortense Gimonet,Alexander German,Katerina Andreadis,Monica Cheng,Lucian Sulica,Olivier Elemento,J. Wesley Barnes,Anaïs Rameau
出处
期刊:Laryngoscope investigative otolaryngology [Wiley]
卷期号:7 (2): 460-466 被引量:16
标识
DOI:10.1002/lio2.754
摘要

Abstract Objective This study aims to develop and validate a convolutional neural network (CNN)‐based algorithm for automatic selection of informative frames in flexible laryngoscopic videos. The classifier has the potential to aid in the development of computer‐aided diagnosis systems and reduce data processing time for clinician‐computer scientist teams. Methods A dataset of 22,132 laryngoscopic frames was extracted from 137 flexible laryngostroboscopic videos from 115 patients. 55 videos were from healthy patients with no laryngeal pathology and 82 videos were from patients with vocal fold polyps. The extracted frames were manually labeled as informative or uninformative by two independent reviewers based on vocal fold visibility, lighting, focus, and camera distance, resulting in 18,114 informative frames and 4018 uninformative frames. The dataset was split into training and test sets. A pre‐trained ResNet‐18 model was trained using transfer learning to classify frames as informative or uninformative. Hyperparameters were set using cross‐validation. The primary outcome was precision for the informative class and secondary outcomes were precision, recall, and F1‐score for all classes. The processing rate for frames between the model and a human annotator were compared. Results The automated classifier achieved an informative frame precision, recall, and F1‐score of 94.4%, 90.2%, and 92.3%, respectively, when evaluated on a hold‐out test set of 4438 frames. The model processed frames 16 times faster than a human annotator. Conclusion The CNN‐based classifier demonstrates high precision for classifying informative frames in flexible laryngostroboscopic videos. This model has the potential to aid researchers with dataset creation for computer‐aided diagnosis systems by automatically extracting relevant frames from laryngoscopic videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老王爱学习完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
Kia发布了新的文献求助30
2秒前
GUKGO完成签到,获得积分10
3秒前
limerence完成签到,获得积分10
3秒前
汉堡包应助风轩轩采纳,获得10
3秒前
林深时见鹿完成签到,获得积分10
3秒前
3秒前
13发布了新的文献求助30
4秒前
4秒前
orixero应助清爽朋友采纳,获得10
4秒前
凡人完成签到,获得积分10
5秒前
爆米花应助坚强水杯采纳,获得100
5秒前
shenyanlei发布了新的文献求助10
5秒前
欢喜大地发布了新的文献求助10
5秒前
Spencer发布了新的文献求助30
5秒前
随便发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
DTS发布了新的文献求助10
8秒前
8秒前
1851611453完成签到 ,获得积分10
9秒前
刘丰铭发布了新的文献求助10
9秒前
SciGPT应助jhonnyhuang采纳,获得10
9秒前
9秒前
11秒前
sunshine完成签到,获得积分10
11秒前
风清扬发布了新的文献求助10
11秒前
科研通AI6应助结实的栾采纳,获得10
11秒前
AskNature完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802