Automatic classification of informative laryngoscopic images using deep learning

人工智能 计算机科学 分类器(UML) 模式识别(心理学) 试验装置 卷积神经网络 超参数 精确性和召回率 学习迁移 F1得分
作者
Peter Yao,Dan Witte,Hortense Gimonet,Alexander German,Katerina Andreadis,Monica Cheng,Lucian Sulica,Olivier Elemento,J. Wesley Barnes,Anaïs Rameau
出处
期刊:Laryngoscope investigative otolaryngology [Wiley]
卷期号:7 (2): 460-466 被引量:16
标识
DOI:10.1002/lio2.754
摘要

Abstract Objective This study aims to develop and validate a convolutional neural network (CNN)‐based algorithm for automatic selection of informative frames in flexible laryngoscopic videos. The classifier has the potential to aid in the development of computer‐aided diagnosis systems and reduce data processing time for clinician‐computer scientist teams. Methods A dataset of 22,132 laryngoscopic frames was extracted from 137 flexible laryngostroboscopic videos from 115 patients. 55 videos were from healthy patients with no laryngeal pathology and 82 videos were from patients with vocal fold polyps. The extracted frames were manually labeled as informative or uninformative by two independent reviewers based on vocal fold visibility, lighting, focus, and camera distance, resulting in 18,114 informative frames and 4018 uninformative frames. The dataset was split into training and test sets. A pre‐trained ResNet‐18 model was trained using transfer learning to classify frames as informative or uninformative. Hyperparameters were set using cross‐validation. The primary outcome was precision for the informative class and secondary outcomes were precision, recall, and F1‐score for all classes. The processing rate for frames between the model and a human annotator were compared. Results The automated classifier achieved an informative frame precision, recall, and F1‐score of 94.4%, 90.2%, and 92.3%, respectively, when evaluated on a hold‐out test set of 4438 frames. The model processed frames 16 times faster than a human annotator. Conclusion The CNN‐based classifier demonstrates high precision for classifying informative frames in flexible laryngostroboscopic videos. This model has the potential to aid researchers with dataset creation for computer‐aided diagnosis systems by automatically extracting relevant frames from laryngoscopic videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiuxiuzhang发布了新的文献求助10
刚刚
可爱的小朋友完成签到,获得积分10
1秒前
FashionBoy应助shenhongru采纳,获得10
1秒前
QQQ完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
斯文败类应助WEAWEA采纳,获得10
5秒前
5秒前
6秒前
科研通AI2S应助如意的冰双采纳,获得10
7秒前
能干的问晴完成签到,获得积分10
8秒前
miemie66发布了新的文献求助10
8秒前
香芋完成签到 ,获得积分10
8秒前
nihao发布了新的文献求助10
8秒前
8秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
韩野发布了新的文献求助10
13秒前
山海完成签到,获得积分10
13秒前
penpen发布了新的文献求助10
13秒前
14秒前
张芃尧完成签到,获得积分20
15秒前
天天快乐应助CHEN采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
SciGPT应助hearz采纳,获得10
17秒前
17秒前
孙元应助zzz采纳,获得10
18秒前
18秒前
元谷雪发布了新的文献求助10
19秒前
英姑应助Vizz采纳,获得10
19秒前
起个名真难完成签到,获得积分10
19秒前
幻影完成签到 ,获得积分10
19秒前
ayintree完成签到,获得积分10
20秒前
20秒前
小蘑菇应助mm采纳,获得10
20秒前
Nan发布了新的文献求助200
20秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233