清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic classification of informative laryngoscopic images using deep learning

人工智能 计算机科学 分类器(UML) 模式识别(心理学) 试验装置 卷积神经网络 超参数 精确性和召回率 学习迁移 F1得分
作者
Peter Yao,Dan Witte,Hortense Gimonet,Alexander German,Katerina Andreadis,Monica Cheng,Lucian Sulica,Olivier Elemento,J. Wesley Barnes,Anaïs Rameau
出处
期刊:Laryngoscope investigative otolaryngology [Wiley]
卷期号:7 (2): 460-466 被引量:16
标识
DOI:10.1002/lio2.754
摘要

Abstract Objective This study aims to develop and validate a convolutional neural network (CNN)‐based algorithm for automatic selection of informative frames in flexible laryngoscopic videos. The classifier has the potential to aid in the development of computer‐aided diagnosis systems and reduce data processing time for clinician‐computer scientist teams. Methods A dataset of 22,132 laryngoscopic frames was extracted from 137 flexible laryngostroboscopic videos from 115 patients. 55 videos were from healthy patients with no laryngeal pathology and 82 videos were from patients with vocal fold polyps. The extracted frames were manually labeled as informative or uninformative by two independent reviewers based on vocal fold visibility, lighting, focus, and camera distance, resulting in 18,114 informative frames and 4018 uninformative frames. The dataset was split into training and test sets. A pre‐trained ResNet‐18 model was trained using transfer learning to classify frames as informative or uninformative. Hyperparameters were set using cross‐validation. The primary outcome was precision for the informative class and secondary outcomes were precision, recall, and F1‐score for all classes. The processing rate for frames between the model and a human annotator were compared. Results The automated classifier achieved an informative frame precision, recall, and F1‐score of 94.4%, 90.2%, and 92.3%, respectively, when evaluated on a hold‐out test set of 4438 frames. The model processed frames 16 times faster than a human annotator. Conclusion The CNN‐based classifier demonstrates high precision for classifying informative frames in flexible laryngostroboscopic videos. This model has the potential to aid researchers with dataset creation for computer‐aided diagnosis systems by automatically extracting relevant frames from laryngoscopic videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医学僧发布了新的文献求助10
3秒前
老刘完成签到,获得积分10
11秒前
18秒前
33秒前
35秒前
49秒前
幽默滑板完成签到,获得积分10
55秒前
迪鸣完成签到,获得积分0
57秒前
1分钟前
路过完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
chichenglin完成签到 ,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
xiaosang0619完成签到,获得积分10
1分钟前
彩色的芷容完成签到 ,获得积分10
1分钟前
fogsea完成签到,获得积分0
1分钟前
合适醉蝶完成签到 ,获得积分10
2分钟前
zhaoyu完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
myq完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
DJ_Tokyo完成签到,获得积分10
2分钟前
平淡访冬完成签到 ,获得积分10
2分钟前
2分钟前
橙汁摇一摇完成签到 ,获得积分10
3分钟前
ARIA完成签到 ,获得积分10
3分钟前
aimanqiankun55完成签到 ,获得积分10
3分钟前
3分钟前
卷卷心发布了新的文献求助30
3分钟前
瘦瘦发布了新的文献求助20
3分钟前
zzgpku完成签到,获得积分0
3分钟前
红茸茸羊完成签到 ,获得积分10
3分钟前
666完成签到 ,获得积分0
4分钟前
王多肉完成签到,获得积分10
4分钟前
Lillianzhu1完成签到,获得积分10
4分钟前
222完成签到,获得积分10
4分钟前
yzhilson完成签到 ,获得积分10
4分钟前
可爱的函函应助瘦瘦采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839