清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic classification of informative laryngoscopic images using deep learning

人工智能 计算机科学 分类器(UML) 模式识别(心理学) 试验装置 卷积神经网络 超参数 精确性和召回率 学习迁移 F1得分
作者
Peter Yao,Dan Witte,Hortense Gimonet,Alexander German,Katerina Andreadis,Monica Cheng,Lucian Sulica,Olivier Elemento,J. Wesley Barnes,Anaïs Rameau
出处
期刊:Laryngoscope investigative otolaryngology [Wiley]
卷期号:7 (2): 460-466 被引量:16
标识
DOI:10.1002/lio2.754
摘要

Abstract Objective This study aims to develop and validate a convolutional neural network (CNN)‐based algorithm for automatic selection of informative frames in flexible laryngoscopic videos. The classifier has the potential to aid in the development of computer‐aided diagnosis systems and reduce data processing time for clinician‐computer scientist teams. Methods A dataset of 22,132 laryngoscopic frames was extracted from 137 flexible laryngostroboscopic videos from 115 patients. 55 videos were from healthy patients with no laryngeal pathology and 82 videos were from patients with vocal fold polyps. The extracted frames were manually labeled as informative or uninformative by two independent reviewers based on vocal fold visibility, lighting, focus, and camera distance, resulting in 18,114 informative frames and 4018 uninformative frames. The dataset was split into training and test sets. A pre‐trained ResNet‐18 model was trained using transfer learning to classify frames as informative or uninformative. Hyperparameters were set using cross‐validation. The primary outcome was precision for the informative class and secondary outcomes were precision, recall, and F1‐score for all classes. The processing rate for frames between the model and a human annotator were compared. Results The automated classifier achieved an informative frame precision, recall, and F1‐score of 94.4%, 90.2%, and 92.3%, respectively, when evaluated on a hold‐out test set of 4438 frames. The model processed frames 16 times faster than a human annotator. Conclusion The CNN‐based classifier demonstrates high precision for classifying informative frames in flexible laryngostroboscopic videos. This model has the potential to aid researchers with dataset creation for computer‐aided diagnosis systems by automatically extracting relevant frames from laryngoscopic videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊蒙发布了新的文献求助10
5秒前
18秒前
秋半雪发布了新的文献求助10
23秒前
啊蒙完成签到,获得积分10
23秒前
乐乐应助小居采纳,获得10
27秒前
30秒前
Funnymudpee发布了新的文献求助10
34秒前
50秒前
52秒前
1分钟前
1分钟前
1分钟前
1分钟前
kzxhql发布了新的文献求助10
1分钟前
1分钟前
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
1分钟前
专注的觅云完成签到 ,获得积分10
1分钟前
怪怪完成签到,获得积分10
1分钟前
Nene完成签到 ,获得积分20
2分钟前
2分钟前
xxfsx应助kzxhql采纳,获得10
2分钟前
xxfsx应助kzxhql采纳,获得10
2分钟前
2分钟前
Funnymudpee发布了新的文献求助10
2分钟前
2分钟前
MTF完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Eileen完成签到 ,获得积分0
3分钟前
合不着完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624