Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM

鉴别器 光伏系统 计算机科学 瓶颈 人工智能 发电机(电路理论) 人工神经网络 钥匙(锁) 循环神经网络 卷积神经网络 深度学习 时间序列 机器学习 网格 功率(物理) 工程类 数学 探测器 电气工程 物理 电信 嵌入式系统 量子力学 计算机安全 几何学
作者
Xiaoqiao Huang,Qiong Li,Yonghang Tai,Zaiqing Chen,Jun Liu,Junsheng Shi,Wu-Ming Liu
出处
期刊:Energy [Elsevier]
卷期号:246: 123403-123403 被引量:90
标识
DOI:10.1016/j.energy.2022.123403
摘要

More and more photovoltaic (PV) power generation is incorporated into the grid. However, the intermittence and fluctuation of solar energy have brought huge challenges to the safe and stable operation of the power grid. PV power forecasting is one of the effective ways to solve the above problems, so it has become an important research topic. However, the existing research based on deep learning models mainly focuses on more complex network structures, optimization algorithms, and data decomposition. These hybrid models have encountered a development bottleneck in extracting the inherent features of PV power and related data, and a new idea and method are needed. This paper proposes a novel TSF-CGANs (time series forecasting based on CGANs, TSF-CGANs) algorithm considering conditional generative adversarial networks (CGANs) combined with convolutional neural networks (CNN) and Bi-directional long short-term memory (Bi-LSTM) for improving the accuracy of hourly PV power prediction. We design the generator in the TSF-CGANs network as a regression prediction model, which can extract the features based on historical data and random noise vector by the complex models, and finally use the Bi-LSTM model to output the predicted value. At the same time, the discriminator judges the authenticity of the generated predicted value and the actual value. In the continuous game between the generator and the discriminator, the parameters of the generator are optimized and more accurate prediction results are obtained. The performance of the proposed method is demonstrated with a real-world dataset. Compared with LSTM, recurrent neural network (RNN), back-propagation neural network (BP), support vector machine (SVM), and Persistence models, the values of five performance evaluation indicators, RMSE, MAE, nRMSE, R2, and R, show that the proposed model has better performance in prediction accuracy. Compared with the traditional BP, the TSF-CGANs model reduced the RMSE by 32%, Compared with the Persistence, the forecast skill (FS) of TSF-CGANs is 0.4863. The results indicate that it is feasible to use the generator to realize time series prediction in the proposed TSF-CGANs network. The core idea of TSF-CGANs method is to improve the prediction accuracy of the generator through the continuous game between the generator and the discriminator, which provides a new idea for the training process of the prediction method based on deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助hanyang965采纳,获得10
刚刚
共享精神应助凯瑟琳采纳,获得10
刚刚
吴彦祖完成签到,获得积分10
刚刚
科研通AI2S应助温暖寻雪采纳,获得10
1秒前
打打应助小左采纳,获得10
2秒前
Chen完成签到,获得积分20
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
mhl11应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得100
3秒前
mhl11应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
mhl11应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
bazinga应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
dzyong发布了新的文献求助30
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
温婉的笑阳完成签到,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
ningguizhang完成签到,获得积分10
5秒前
Cape发布了新的文献求助10
6秒前
6秒前
left发布了新的文献求助50
6秒前
本真完成签到,获得积分20
7秒前
搞怪的夏蓉完成签到,获得积分20
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272