Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM

鉴别器 光伏系统 计算机科学 瓶颈 人工智能 发电机(电路理论) 人工神经网络 钥匙(锁) 循环神经网络 卷积神经网络 深度学习 时间序列 机器学习 网格 功率(物理) 工程类 数学 探测器 电气工程 物理 电信 嵌入式系统 量子力学 计算机安全 几何学
作者
Xiaoqiao Huang,Qiong Li,Yonghang Tai,Zaiqing Chen,Jun Liu,Junsheng Shi,Wu-Ming Liu
出处
期刊:Energy [Elsevier BV]
卷期号:246: 123403-123403 被引量:90
标识
DOI:10.1016/j.energy.2022.123403
摘要

More and more photovoltaic (PV) power generation is incorporated into the grid. However, the intermittence and fluctuation of solar energy have brought huge challenges to the safe and stable operation of the power grid. PV power forecasting is one of the effective ways to solve the above problems, so it has become an important research topic. However, the existing research based on deep learning models mainly focuses on more complex network structures, optimization algorithms, and data decomposition. These hybrid models have encountered a development bottleneck in extracting the inherent features of PV power and related data, and a new idea and method are needed. This paper proposes a novel TSF-CGANs (time series forecasting based on CGANs, TSF-CGANs) algorithm considering conditional generative adversarial networks (CGANs) combined with convolutional neural networks (CNN) and Bi-directional long short-term memory (Bi-LSTM) for improving the accuracy of hourly PV power prediction. We design the generator in the TSF-CGANs network as a regression prediction model, which can extract the features based on historical data and random noise vector by the complex models, and finally use the Bi-LSTM model to output the predicted value. At the same time, the discriminator judges the authenticity of the generated predicted value and the actual value. In the continuous game between the generator and the discriminator, the parameters of the generator are optimized and more accurate prediction results are obtained. The performance of the proposed method is demonstrated with a real-world dataset. Compared with LSTM, recurrent neural network (RNN), back-propagation neural network (BP), support vector machine (SVM), and Persistence models, the values of five performance evaluation indicators, RMSE, MAE, nRMSE, R2, and R, show that the proposed model has better performance in prediction accuracy. Compared with the traditional BP, the TSF-CGANs model reduced the RMSE by 32%, Compared with the Persistence, the forecast skill (FS) of TSF-CGANs is 0.4863. The results indicate that it is feasible to use the generator to realize time series prediction in the proposed TSF-CGANs network. The core idea of TSF-CGANs method is to improve the prediction accuracy of the generator through the continuous game between the generator and the discriminator, which provides a new idea for the training process of the prediction method based on deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助缄默采纳,获得10
1秒前
1秒前
lily完成签到,获得积分10
2秒前
天气一级棒完成签到,获得积分10
2秒前
3秒前
4秒前
ee4455发布了新的文献求助30
5秒前
逆蝶发布了新的文献求助10
7秒前
7秒前
7秒前
唐煜城发布了新的文献求助10
8秒前
9秒前
12秒前
罗氏集团发布了新的文献求助10
13秒前
文艺书芹发布了新的文献求助10
13秒前
feedyoursoul发布了新的文献求助10
16秒前
zp发布了新的文献求助10
19秒前
19秒前
文艺书芹完成签到,获得积分10
22秒前
唐煜城完成签到,获得积分10
22秒前
23秒前
缄默发布了新的文献求助10
23秒前
23秒前
24秒前
苗条世德完成签到,获得积分10
25秒前
26秒前
多情的初蓝完成签到,获得积分10
27秒前
叮叮叮完成签到 ,获得积分10
27秒前
充电宝应助wanwan采纳,获得10
27秒前
北城完成签到,获得积分10
30秒前
clara完成签到,获得积分10
30秒前
30秒前
jingjing发布了新的文献求助30
30秒前
31秒前
北城发布了新的文献求助10
32秒前
纯真的十三完成签到,获得积分10
33秒前
33秒前
34秒前
小白鞋完成签到 ,获得积分10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997562
求助须知:如何正确求助?哪些是违规求助? 3537094
关于积分的说明 11270816
捐赠科研通 3276315
什么是DOI,文献DOI怎么找? 1806876
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975