Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM

鉴别器 光伏系统 计算机科学 瓶颈 人工智能 发电机(电路理论) 人工神经网络 钥匙(锁) 循环神经网络 卷积神经网络 深度学习 时间序列 机器学习 网格 功率(物理) 工程类 数学 探测器 电气工程 物理 电信 嵌入式系统 量子力学 计算机安全 几何学
作者
Xiaoqiao Huang,Qiong Li,Yonghang Tai,Zaiqing Chen,Jun Liu,Junsheng Shi,Wu-Ming Liu
出处
期刊:Energy [Elsevier]
卷期号:246: 123403-123403 被引量:90
标识
DOI:10.1016/j.energy.2022.123403
摘要

More and more photovoltaic (PV) power generation is incorporated into the grid. However, the intermittence and fluctuation of solar energy have brought huge challenges to the safe and stable operation of the power grid. PV power forecasting is one of the effective ways to solve the above problems, so it has become an important research topic. However, the existing research based on deep learning models mainly focuses on more complex network structures, optimization algorithms, and data decomposition. These hybrid models have encountered a development bottleneck in extracting the inherent features of PV power and related data, and a new idea and method are needed. This paper proposes a novel TSF-CGANs (time series forecasting based on CGANs, TSF-CGANs) algorithm considering conditional generative adversarial networks (CGANs) combined with convolutional neural networks (CNN) and Bi-directional long short-term memory (Bi-LSTM) for improving the accuracy of hourly PV power prediction. We design the generator in the TSF-CGANs network as a regression prediction model, which can extract the features based on historical data and random noise vector by the complex models, and finally use the Bi-LSTM model to output the predicted value. At the same time, the discriminator judges the authenticity of the generated predicted value and the actual value. In the continuous game between the generator and the discriminator, the parameters of the generator are optimized and more accurate prediction results are obtained. The performance of the proposed method is demonstrated with a real-world dataset. Compared with LSTM, recurrent neural network (RNN), back-propagation neural network (BP), support vector machine (SVM), and Persistence models, the values of five performance evaluation indicators, RMSE, MAE, nRMSE, R2, and R, show that the proposed model has better performance in prediction accuracy. Compared with the traditional BP, the TSF-CGANs model reduced the RMSE by 32%, Compared with the Persistence, the forecast skill (FS) of TSF-CGANs is 0.4863. The results indicate that it is feasible to use the generator to realize time series prediction in the proposed TSF-CGANs network. The core idea of TSF-CGANs method is to improve the prediction accuracy of the generator through the continuous game between the generator and the discriminator, which provides a new idea for the training process of the prediction method based on deep learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
善学以致用应助从容的翼采纳,获得10
1秒前
lll发布了新的文献求助10
1秒前
含蓄听南发布了新的文献求助10
1秒前
科研通AI6应助julia采纳,获得10
2秒前
耶耶奶绿发布了新的文献求助10
2秒前
云墨完成签到 ,获得积分10
3秒前
英俊的铭应助moyu123采纳,获得10
3秒前
子车茗应助eily采纳,获得60
5秒前
执念的鱼发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
木森ab完成签到,获得积分20
6秒前
禾下乘凉完成签到,获得积分10
7秒前
bkagyin应助奋斗的橘子采纳,获得10
7秒前
9秒前
小确幸完成签到,获得积分10
9秒前
9秒前
11秒前
结实的凝天完成签到,获得积分10
12秒前
lll完成签到,获得积分10
12秒前
fatal发布了新的文献求助10
14秒前
14秒前
科研南完成签到 ,获得积分10
14秒前
聪仔发布了新的文献求助10
14秒前
科目三应助青石采纳,获得10
14秒前
小二郎应助929采纳,获得10
14秒前
思源应助天天破大防采纳,获得10
15秒前
852应助许子采纳,获得10
15秒前
ghhhh6完成签到,获得积分10
15秒前
17秒前
18秒前
单薄静珊完成签到,获得积分10
19秒前
大个应助ji采纳,获得10
20秒前
21秒前
秋秋发布了新的文献求助10
22秒前
glacier完成签到,获得积分10
22秒前
Ffffff完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497