MoO3 Nanoparticle Coatings on High-Voltage 5 V LiNi0.5Mn1.5O4 Cathode Materials for Improving Lithium-Ion Battery Performance

材料科学 电化学 阳极 涂层 阴极 电极 纳米颗粒 化学工程 锂离子电池 球磨机 电池(电) 退火(玻璃) 锂(药物) 纳米技术 复合材料 化学 工程类 内分泌学 物理化学 物理 功率(物理) 医学 量子力学
作者
Zong–Han Wu,Jeng-Ywan Shih,Ying-Jeng James Li,Yi-De Tsai,Tai‐Feng Hung,Chelladurai Karuppiah,Rajan Jose,Chun‐Chen Yang
出处
期刊:Nanomaterials [MDPI AG]
卷期号:12 (3): 409-409 被引量:11
标识
DOI:10.3390/nano12030409
摘要

To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge-discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g-1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g-1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sofia发布了新的文献求助60
刚刚
1秒前
橘子姐姐发布了新的文献求助10
2秒前
yanyan完成签到,获得积分10
3秒前
TT完成签到,获得积分10
4秒前
4秒前
了然完成签到 ,获得积分10
5秒前
jxp完成签到,获得积分10
5秒前
jojo完成签到 ,获得积分10
6秒前
6秒前
勤劳落雁完成签到 ,获得积分10
6秒前
9秒前
爆米花应助科研通管家采纳,获得30
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
赘婿应助Quzhengkai采纳,获得10
10秒前
sutharsons应助科研通管家采纳,获得30
10秒前
李爱国应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
调研昵称发布了新的文献求助10
11秒前
CodeCraft应助清新的苑博采纳,获得10
12秒前
所所应助Chen采纳,获得10
13秒前
15秒前
15秒前
goldenfleece发布了新的文献求助10
15秒前
怕黑的钥匙完成签到 ,获得积分10
15秒前
zhangsf88完成签到,获得积分10
15秒前
科研通AI5应助科研小能手采纳,获得10
15秒前
乐乐应助热情芷荷采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808