Machine learning for impurity charge-state transition levels in semiconductors from elemental properties using multi-fidelity datasets

密度泛函理论 半导体 混合功能 计算机科学 忠诚 均方误差 光伏 材料科学 计算物理学 带隙 杂质 人工智能 算法 机器学习 统计物理学 物理 光电子学 数学 量子力学 工程类 统计 光伏系统 电气工程 电信
作者
Maciej P. Polak,Ryan Jacobs,Arun Mannodi‐Kanakkithodi,Maria K. Y. Chan,Dane Morgan
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:156 (11) 被引量:13
标识
DOI:10.1063/5.0083877
摘要

Quantifying charge-state transition energy levels of impurities in semiconductors is critical to understanding and engineering their optoelectronic properties for applications ranging from solar photovoltaics to infrared lasers. While these transition levels can be measured and calculated accurately, such efforts are time-consuming and more rapid prediction methods would be beneficial. Here, we significantly reduce the time typically required to predict impurity transition levels using multi-fidelity datasets and a machine learning approach employing features based on elemental properties and impurity positions. We use transition levels obtained from low-fidelity (i.e., local-density approximation or generalized gradient approximation) density functional theory (DFT) calculations, corrected using a recently proposed modified band alignment scheme, which well-approximates transition levels from high-fidelity DFT (i.e., hybrid HSE06). The model fit to the large multi-fidelity database shows improved accuracy compared to the models trained on the more limited high-fidelity values. Crucially, in our approach, when using the multi-fidelity data, high-fidelity values are not required for model training, significantly reducing the computational cost required for training the model. Our machine learning model of transition levels has a root mean squared (mean absolute) error of 0.36 (0.27) eV vs high-fidelity hybrid functional values when averaged over 14 semiconductor systems from the II-VI and III-V families. As a guide for use on other systems, we assessed the model on simulated data to show the expected accuracy level as a function of bandgap for new materials of interest. Finally, we use the model to predict a complete space of impurity charge-state transition levels in all zinc blende III-V and II-VI systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
熏熏完成签到 ,获得积分10
1秒前
3秒前
星辰大海应助wuqs采纳,获得10
4秒前
111完成签到 ,获得积分10
4秒前
机智的青柏完成签到 ,获得积分10
5秒前
桐桐应助Jim luo采纳,获得10
5秒前
BB完成签到,获得积分20
6秒前
坚强的缘分完成签到,获得积分10
7秒前
浮游应助wjw采纳,获得10
8秒前
浮游应助wjw采纳,获得10
8秒前
浮游应助wjw采纳,获得10
8秒前
Lee完成签到,获得积分10
9秒前
纯真的醉柳完成签到,获得积分10
9秒前
十五完成签到,获得积分10
11秒前
李燕伟完成签到 ,获得积分10
11秒前
12秒前
苏以禾完成签到 ,获得积分10
14秒前
14秒前
冷冷完成签到 ,获得积分10
15秒前
怀南完成签到 ,获得积分10
16秒前
Jim luo发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
wjw完成签到,获得积分10
20秒前
乌云乌云快走开完成签到,获得积分10
21秒前
1111chen完成签到 ,获得积分10
21秒前
蓝韵完成签到,获得积分10
22秒前
matt完成签到,获得积分10
23秒前
舒克完成签到,获得积分10
25秒前
25秒前
Jim luo完成签到,获得积分10
25秒前
27秒前
高大以南完成签到,获得积分10
27秒前
hbj完成签到,获得积分10
27秒前
丽丽完成签到 ,获得积分10
30秒前
忧郁的猪鼻子完成签到 ,获得积分10
30秒前
明亮谷波发布了新的文献求助10
31秒前
qiqi完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
33秒前
小杭76完成签到,获得积分0
35秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590