Machine learning for impurity charge-state transition levels in semiconductors from elemental properties using multi-fidelity datasets

密度泛函理论 半导体 混合功能 计算机科学 忠诚 均方误差 光伏 材料科学 计算物理学 带隙 杂质 人工智能 算法 机器学习 统计物理学 物理 光电子学 数学 量子力学 工程类 统计 光伏系统 电气工程 电信
作者
Maciej P. Polak,Ryan Jacobs,Arun Mannodi‐Kanakkithodi,Maria K. Y. Chan,Dane Morgan
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:156 (11) 被引量:13
标识
DOI:10.1063/5.0083877
摘要

Quantifying charge-state transition energy levels of impurities in semiconductors is critical to understanding and engineering their optoelectronic properties for applications ranging from solar photovoltaics to infrared lasers. While these transition levels can be measured and calculated accurately, such efforts are time-consuming and more rapid prediction methods would be beneficial. Here, we significantly reduce the time typically required to predict impurity transition levels using multi-fidelity datasets and a machine learning approach employing features based on elemental properties and impurity positions. We use transition levels obtained from low-fidelity (i.e., local-density approximation or generalized gradient approximation) density functional theory (DFT) calculations, corrected using a recently proposed modified band alignment scheme, which well-approximates transition levels from high-fidelity DFT (i.e., hybrid HSE06). The model fit to the large multi-fidelity database shows improved accuracy compared to the models trained on the more limited high-fidelity values. Crucially, in our approach, when using the multi-fidelity data, high-fidelity values are not required for model training, significantly reducing the computational cost required for training the model. Our machine learning model of transition levels has a root mean squared (mean absolute) error of 0.36 (0.27) eV vs high-fidelity hybrid functional values when averaged over 14 semiconductor systems from the II-VI and III-V families. As a guide for use on other systems, we assessed the model on simulated data to show the expected accuracy level as a function of bandgap for new materials of interest. Finally, we use the model to predict a complete space of impurity charge-state transition levels in all zinc blende III-V and II-VI systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kkkk完成签到,获得积分10
1秒前
小二郎应助vv采纳,获得10
1秒前
芝士发布了新的文献求助10
1秒前
hahahahah1111发布了新的文献求助10
1秒前
2秒前
ding应助小苏采纳,获得10
2秒前
caiia发布了新的文献求助10
3秒前
4秒前
4秒前
自由滑大王完成签到 ,获得积分10
4秒前
5秒前
5秒前
didi发布了新的文献求助10
5秒前
研友_VZG7GZ应助青葱之松采纳,获得10
6秒前
应用完成签到,获得积分20
6秒前
科研通AI6应助fxsg采纳,获得10
6秒前
8秒前
8秒前
8秒前
zhang关注了科研通微信公众号
9秒前
9秒前
虚心的觅松完成签到,获得积分10
9秒前
应用发布了新的文献求助30
10秒前
RockRedfoo发布了新的文献求助10
10秒前
顾矜应助我有一个超能力采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
烂漫的飞松完成签到,获得积分10
11秒前
11秒前
xiaoyuanbao1988完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
张杰发布了新的文献求助10
13秒前
科研通AI2S应助Sky采纳,获得10
13秒前
科研通AI6应助我叫XXXXXXX采纳,获得10
14秒前
斗转星移发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683