Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism

水准点(测量) 随机性 能量(信号处理) 期限(时间) 计算机科学 任务(项目管理) 人工智能 数学优化 模拟 工程类 数学 统计 物理 系统工程 量子力学 大地测量学 地理
作者
Dongxiao Niu,Min Yu,Lijie Sun,Tian Gao,Keke Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:313: 118801-118801 被引量:234
标识
DOI:10.1016/j.apenergy.2022.118801
摘要

Accurate short-term multi-energy load forecasting is an essential prerequisite for ensuring the reliable and economic operation of integrated energy systems (IES). Considering the large fluctuations, strong randomness, and the multi-energy coupling relationship of regional IES, this paper proposes a novel short-term multi-energy load forecasting method based on a CNN-BiGRU model that is optimized by attention mechanism. First, the dynamic coupling relationship between multi-energy loads is qualitatively analyzed, and the influencing factors of multi-energ loads are screened based on data-driven analysis. Second, a one-dimensional CNN layer is formulated to extract complex high-dimensional features, and BiGRU is constructed to extract the time dependence from historical sequences. In particular, three attention mechanism modules are introduced to the BiGRU hidden state through the mapping weight and learning parameter matrix to enhance the impact of key information. Then, hard weight sharing is adopted to extract the inherent multi-energy coupling relationship. Finally, a novel multi-task loss function weight optimization method is applied to search for the optimal multi-task weight, which is used to balance multi-task learning (MTL) to achieve the optimization of the overall forecasting model. To validate the effectiveness of the CNN-BiGRU-Attention MTL model with loss function optimization, this paper compares the proposed model with five benchmark models by MAPE, RMSE, MAE, R2, and computational time. Compared with the traditional LSTM model, the cooling, heat, and electrical load forecasting accuracy (measured by MAPE) of the proposed hybrid model increased by 61.86%, 73.03%, and 63.39%, respectively, which demonstrates that the proposed model exhibits superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
理来服完成签到,获得积分10
4秒前
4秒前
Mankind完成签到,获得积分10
4秒前
5秒前
6秒前
Hello应助大bulingbulin采纳,获得10
6秒前
7秒前
7秒前
鲤鱼寒荷发布了新的文献求助10
9秒前
青晨发布了新的文献求助10
10秒前
11秒前
11秒前
Pinkie完成签到,获得积分10
13秒前
pluto应助haifang采纳,获得10
13秒前
14秒前
鲤鱼寒荷完成签到,获得积分10
14秒前
16秒前
17秒前
17秒前
力量发布了新的文献求助10
18秒前
搜集达人应助Shacoooo采纳,获得10
18秒前
19秒前
Swim发布了新的文献求助30
19秒前
tiantian8715发布了新的文献求助10
20秒前
852应助纸鸢采纳,获得30
22秒前
23秒前
风清扬应助斑马还没睡采纳,获得10
23秒前
科研通AI2S应助wang采纳,获得10
24秒前
JamesPei应助兜兜采纳,获得10
24秒前
123123123完成签到,获得积分10
24秒前
25秒前
邰归完成签到,获得积分10
25秒前
FANGQUAN完成签到,获得积分10
26秒前
稻草人完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
zjq发布了新的文献求助10
28秒前
29秒前
FANGQUAN发布了新的文献求助50
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963