Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism

水准点(测量) 随机性 能量(信号处理) 期限(时间) 计算机科学 任务(项目管理) 人工智能 数学优化 模拟 工程类 数学 统计 物理 量子力学 系统工程 地理 大地测量学
作者
Dongxiao Niu,Min Yu,Lijie Sun,Tian Gao,Keke Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:313: 118801-118801 被引量:171
标识
DOI:10.1016/j.apenergy.2022.118801
摘要

Accurate short-term multi-energy load forecasting is an essential prerequisite for ensuring the reliable and economic operation of integrated energy systems (IES). Considering the large fluctuations, strong randomness, and the multi-energy coupling relationship of regional IES, this paper proposes a novel short-term multi-energy load forecasting method based on a CNN-BiGRU model that is optimized by attention mechanism. First, the dynamic coupling relationship between multi-energy loads is qualitatively analyzed, and the influencing factors of multi-energ loads are screened based on data-driven analysis. Second, a one-dimensional CNN layer is formulated to extract complex high-dimensional features, and BiGRU is constructed to extract the time dependence from historical sequences. In particular, three attention mechanism modules are introduced to the BiGRU hidden state through the mapping weight and learning parameter matrix to enhance the impact of key information. Then, hard weight sharing is adopted to extract the inherent multi-energy coupling relationship. Finally, a novel multi-task loss function weight optimization method is applied to search for the optimal multi-task weight, which is used to balance multi-task learning (MTL) to achieve the optimization of the overall forecasting model. To validate the effectiveness of the CNN-BiGRU-Attention MTL model with loss function optimization, this paper compares the proposed model with five benchmark models by MAPE, RMSE, MAE, R2, and computational time. Compared with the traditional LSTM model, the cooling, heat, and electrical load forecasting accuracy (measured by MAPE) of the proposed hybrid model increased by 61.86%, 73.03%, and 63.39%, respectively, which demonstrates that the proposed model exhibits superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Paper Maker完成签到,获得积分10
1秒前
Electra发布了新的文献求助10
1秒前
1秒前
leserein完成签到,获得积分10
2秒前
2秒前
Cynthia完成签到 ,获得积分10
3秒前
3秒前
Ade发布了新的文献求助10
3秒前
shunsui顺遂完成签到,获得积分10
4秒前
欣喜大地发布了新的文献求助10
5秒前
5秒前
共享精神应助宝贝采纳,获得10
6秒前
7秒前
7秒前
江幻天完成签到,获得积分10
10秒前
ssw完成签到,获得积分10
11秒前
小王同学完成签到 ,获得积分10
12秒前
赫敏完成签到 ,获得积分10
12秒前
CXE发布了新的文献求助10
13秒前
13秒前
Y不吃香菜完成签到 ,获得积分10
13秒前
国泰民安完成签到,获得积分10
14秒前
15秒前
缓缓矛盾体完成签到,获得积分20
15秒前
15秒前
16秒前
yqiguo完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
圈圈完成签到,获得积分10
17秒前
宝贝发布了新的文献求助10
19秒前
19秒前
二三三完成签到,获得积分10
19秒前
凌云完成签到,获得积分10
19秒前
fgh发布了新的文献求助10
19秒前
19秒前
bkagyin应助MrH采纳,获得10
20秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145789
求助须知:如何正确求助?哪些是违规求助? 2797251
关于积分的说明 7823240
捐赠科研通 2453560
什么是DOI,文献DOI怎么找? 1305699
科研通“疑难数据库(出版商)”最低求助积分说明 627543
版权声明 601484