Regulating Electronic Structure in Bi2O3 Architectures by Ti Mediation: A Strategy for Dual Active Sites Synergistically Promoting Photocatalytic Nitrogen Hydrogenation

光催化 氮气 密度泛函理论 离解(化学) 材料科学 带隙 光化学 活动站点 电子结构 化学 催化作用 化学物理 物理化学 计算化学 光电子学 有机化学
作者
Panfeng Wu,Tianyu Wang,Qi Xue,Mengkai Wang,Ruiqin Zhong,Jun Hu,Zhong Chen,Danjun Wang,Gi Xue
出处
期刊:Chemsuschem [Wiley]
卷期号:15 (11) 被引量:6
标识
DOI:10.1002/cssc.202200297
摘要

Under mild conditions, nitrogen undergoes the associative pathways to be reduced with solar energy as the driving force for fixation, avoiding the high energy consumption when undergoing dissociation. Nevertheless, this process is hindered by the high hydrogenation energy barrier. Herein, Ti was introduced as hard acid into the δ-Bi2 O3 (Ti-Bi2 O3 ) lattice to tune its local electronic structure and optimize its photo-electrochemistry performance (reduced bandgap, increased conduction band maximum, and extended carrier lifetime). Heterokaryotic Ti-Bi dual-active sites in Ti-Bi2 O3 created a novel adsorption geometry of O-N2 interaction proved by density functional theory calculation and N2 temperature-programmed desorption. The synergistic effect of dual-active sites reduced the energy barrier of hydrogenation from 2.65 (Bi2 O3 ) to 2.13 eV (Ti-Bi2 O3 ), thanks to the highly overlapping orbitals with N2 . Results showed that 10 % Ti-doped Bi2 O3 exhibited an excellent ammonia production rate of 508.6 μmol gcat-1 h-1 in water and without sacrificial agent, which is 4.4 times higher than that of Bi2 O3 . In this work, bridging oxygen activation and synergistic hydrogenation for nitrogen with Ti-Bi dual active sites may unveil a corner of the hidden nitrogen reduction reaction mechanism and serves as a distinctive strategy for the design of nitrogen fixation photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助通~采纳,获得30
刚刚
1秒前
Annie发布了新的文献求助10
1秒前
晨曦完成签到,获得积分10
2秒前
十一发布了新的文献求助10
2秒前
顾矜应助Peter采纳,获得30
3秒前
Ayanami完成签到,获得积分10
3秒前
英俊的铭应助ysl采纳,获得30
3秒前
酷波er应助范范采纳,获得10
3秒前
4秒前
Akim应助damian采纳,获得30
4秒前
4秒前
6秒前
番茄炒西红柿完成签到,获得积分10
7秒前
无限安蕾完成签到,获得积分10
7秒前
7秒前
飘逸蘑菇发布了新的文献求助10
8秒前
混沌完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
xg发布了新的文献求助10
10秒前
看看发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
Annie完成签到,获得积分10
12秒前
12秒前
通~发布了新的文献求助30
13秒前
13秒前
雨雾发布了新的文献求助10
14秒前
daiyapeng完成签到,获得积分10
14秒前
ivy应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
NN应助科研通管家采纳,获得10
15秒前
36456657应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794