Digital Twins as Testbeds for Vision-Based Post-earthquake Inspections of Buildings

渲染(计算机图形) 杠杆(统计) 计算机科学 忠诚 组分(热力学) 人工智能 电信 物理 热力学
作者
Vedhus Hoskere,Yasutaka Narazaki,Billie F. Spencer
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 485-495
标识
DOI:10.1007/978-3-031-07258-1_50
摘要

AbstractManual visual inspections typically conducted after an earthquake are high-risk, subjective, and time-consuming. Delays from inspections often exacerbate the social and economic impact of the disaster on affected communities. Rapid and autonomous inspection using images acquired from unmanned aerial vehicles offer the potential to reduce such delays. Indeed, a vast amount of research has been conducted toward developing automated vision-based methods to assess the health of infrastructure at the component and structure level. Most proposed methods typically rely on images of the damaged structure, but seldom consider how the images were acquired. To achieve autonomous inspections, methods must be evaluated in a comprehensive end-to-end manner, incorporating both data acquisition and data processing. In this paper, we leverage recent advances in computer generated imagery (CGI) to construct a 3D synthetic environment with a digital twin for simulation of post-earthquake inspections that allows for comprehensive evaluation and validation of autonomous inspection strategies. A critical issue is how to simulate and subsequently render the damage in the structure after an earthquake. To this end, a high-fidelity nonlinear finite element model is incorporated in the synthetic environment to provide a representation of earthquake-induced damage; this finite element model, combined with photo-realistic rendering of the damage, is termed herein a physics-based graphics models (PBGM). The 3D synthetic environment with PBGM as a digital twin provides a comprehensive end-to-end approach for development and validation of autonomous post-earthquake strategies using UAVs.KeywordsDeep learningAutonomous inspectionsDigital twinsPhysics-based graphics modelsComputer vision
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayzee完成签到,获得积分10
刚刚
如意枫叶发布了新的文献求助10
1秒前
1秒前
1秒前
上官若男应助斜玉采纳,获得30
1秒前
廿廿廿完成签到,获得积分10
2秒前
4秒前
4秒前
FashionBoy应助苹果蜗牛采纳,获得10
5秒前
Zzzzz发布了新的文献求助10
5秒前
小白完成签到,获得积分10
5秒前
苏silence发布了新的文献求助10
6秒前
muzi完成签到,获得积分10
6秒前
阿巴阿哲关注了科研通微信公众号
7秒前
7秒前
嘻嘻哈哈完成签到,获得积分10
7秒前
LM完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助100
7秒前
zlsuen发布了新的文献求助10
8秒前
LI完成签到,获得积分10
8秒前
my123完成签到,获得积分10
8秒前
科研丁完成签到,获得积分10
9秒前
林夏发布了新的文献求助10
9秒前
9秒前
大海123完成签到,获得积分10
10秒前
10秒前
10秒前
冷酷严青发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
ZIS完成签到,获得积分10
12秒前
单薄谷秋完成签到,获得积分10
12秒前
超帅问枫完成签到,获得积分10
12秒前
12秒前
Hindiii完成签到,获得积分10
12秒前
Mr_Lv发布了新的文献求助10
12秒前
13秒前
ryen发布了新的文献求助10
13秒前
ty完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582