Digital Twins as Testbeds for Vision-Based Post-earthquake Inspections of Buildings

渲染(计算机图形) 杠杆(统计) 计算机科学 忠诚 组分(热力学) 人工智能 电信 物理 热力学
作者
Vedhus Hoskere,Yasutaka Narazaki,Billie F. Spencer
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 485-495
标识
DOI:10.1007/978-3-031-07258-1_50
摘要

AbstractManual visual inspections typically conducted after an earthquake are high-risk, subjective, and time-consuming. Delays from inspections often exacerbate the social and economic impact of the disaster on affected communities. Rapid and autonomous inspection using images acquired from unmanned aerial vehicles offer the potential to reduce such delays. Indeed, a vast amount of research has been conducted toward developing automated vision-based methods to assess the health of infrastructure at the component and structure level. Most proposed methods typically rely on images of the damaged structure, but seldom consider how the images were acquired. To achieve autonomous inspections, methods must be evaluated in a comprehensive end-to-end manner, incorporating both data acquisition and data processing. In this paper, we leverage recent advances in computer generated imagery (CGI) to construct a 3D synthetic environment with a digital twin for simulation of post-earthquake inspections that allows for comprehensive evaluation and validation of autonomous inspection strategies. A critical issue is how to simulate and subsequently render the damage in the structure after an earthquake. To this end, a high-fidelity nonlinear finite element model is incorporated in the synthetic environment to provide a representation of earthquake-induced damage; this finite element model, combined with photo-realistic rendering of the damage, is termed herein a physics-based graphics models (PBGM). The 3D synthetic environment with PBGM as a digital twin provides a comprehensive end-to-end approach for development and validation of autonomous post-earthquake strategies using UAVs.KeywordsDeep learningAutonomous inspectionsDigital twinsPhysics-based graphics modelsComputer vision
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助恋雪采纳,获得10
1秒前
搜集达人应助huihuihui采纳,获得10
9秒前
稞小弟完成签到,获得积分10
12秒前
12秒前
随机子应助77采纳,获得10
14秒前
19秒前
星辰大海应助秃驴采纳,获得10
22秒前
十九发布了新的文献求助10
22秒前
WYR完成签到 ,获得积分10
24秒前
开心瓜瓜瓜完成签到,获得积分10
28秒前
28秒前
31秒前
31秒前
江流儿发布了新的文献求助10
33秒前
Lucas应助神华采纳,获得10
34秒前
卫澜发布了新的文献求助10
34秒前
35秒前
35秒前
36秒前
爱吃巧乐兹的猹完成签到 ,获得积分20
37秒前
科研通AI2S应助yinwenchen采纳,获得10
37秒前
淼淼之锋完成签到 ,获得积分10
37秒前
林小雨完成签到,获得积分10
38秒前
秃驴发布了新的文献求助10
39秒前
Apr9810h完成签到 ,获得积分10
40秒前
可耐的三德完成签到 ,获得积分10
41秒前
42秒前
43秒前
43秒前
星辰大海应助11采纳,获得10
44秒前
漏晨完成签到,获得积分10
45秒前
天天快乐应助lihan123采纳,获得10
45秒前
江流儿完成签到,获得积分10
45秒前
秃驴完成签到,获得积分10
46秒前
46秒前
huihuihui发布了新的文献求助10
47秒前
田様应助郝宝真采纳,获得10
48秒前
神华发布了新的文献求助10
48秒前
完美世界应助pf采纳,获得10
49秒前
赘婿应助卫澜采纳,获得10
51秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388