Topology optimization of thin-walled tubes filled with lattice structures

耐撞性 拓扑优化 桁架 结构工程 有限元法 拓扑(电路) 格子(音乐) 材料科学 工程类 声学 物理 电气工程
作者
Dongming Li,Bingzhi Chen,Jianxin Xu,Junxian Zhou,Bingzhi Chen
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:227: 107457-107457 被引量:52
标识
DOI:10.1016/j.ijmecsci.2022.107457
摘要

Thin-walled tubes filled with ultra-light materials have attracted much attention due to excellent energy absorption characteristics. With the development of additive manufacturing technology, it is allowed to manufacture structures with complex geometry shapes as new filled materials. In this study, complex proportional assessment (COPRAS) and discrete optimization algorithm were proposed to design and optimize the topology of thin-walled tubes filled with lattice structures. Firstly, the finite element model verified by experiment was adopted to investigate the influence of cross-sectional configurations and octet truss lattice filling distributions on crashworthiness of hybrid structures. The results show that the cross-sectional configuration has a greater effect on specific energy absorption (SEA) and the lattice filling distribution has a greater effect on peak crushing force (PCF). Then, COPRAS was used to sort the crashworthiness of hybrid structures with different topologies and select the optimal solution. It was found that C3-L4 structure had the best crashworthiness among all design schemes, indicating that the better crashworthiness can be obtained by filling the lattice in the four corner regions of tube or increase the number of cells in corner regions. Finally, the discrete optimization algorithm based on successive orthogonal arrays was adopted to further improve the crashworthiness of hybrid structure. It was found that the thin-walled tubes with different thickness had greater energy absorption capacity than those with the same thickness. Hence, the method proposed in this paper can become an effective way for topology optimization of crashworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pauline完成签到,获得积分10
刚刚
jackie发布了新的文献求助10
刚刚
笨笨摇伽发布了新的文献求助10
2秒前
科目三应助皓月繁星采纳,获得10
2秒前
tomato完成签到,获得积分20
4秒前
CodeCraft应助缘一采纳,获得10
5秒前
小二郎应助刘铭晨采纳,获得10
5秒前
5秒前
大个应助风雨1210采纳,获得10
5秒前
一壶清酒完成签到,获得积分10
5秒前
6秒前
tomato发布了新的文献求助30
7秒前
陈莹发布了新的文献求助10
8秒前
9秒前
9秒前
小狗同志006完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
皓月繁星完成签到,获得积分10
10秒前
ZeJ发布了新的文献求助10
11秒前
11秒前
12秒前
usrcu完成签到 ,获得积分10
12秒前
122x应助赖道之采纳,获得10
13秒前
厉不厉害你坤哥完成签到,获得积分10
13秒前
wuzhizhiya发布了新的文献求助10
14秒前
14秒前
14秒前
皓月繁星发布了新的文献求助10
15秒前
15秒前
迷路白桃发布了新的文献求助20
15秒前
ZeJ完成签到,获得积分10
16秒前
景别发布了新的文献求助10
16秒前
16秒前
NexusExplorer应助陈莹采纳,获得10
17秒前
GXY发布了新的文献求助10
17秒前
嘟嘟发布了新的文献求助10
18秒前
20秒前
Akim应助单纯的雅香采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808