Layered Porous Graphitic Carbon Nitride Stabilized Effective Co2SnO4 Inverse Spinel as a Bifunctional Electrocatalyst for Overall Water Splitting

石墨氮化碳 材料科学 分解水 X射线光电子能谱 双功能 电催化剂 尖晶石 化学工程 析氧 氮化碳 氮化物 无机化学 纳米技术 电化学 电极 催化作用 化学 物理化学 光催化 图层(电子) 冶金 生物化学 工程类
作者
Sathiya Bama Sundararaj,Saravanakumar Tamilarasan,Selvaraju Thangavelu
出处
期刊:Langmuir [American Chemical Society]
卷期号:38 (25): 7833-7845 被引量:51
标识
DOI:10.1021/acs.langmuir.2c01095
摘要

Developing an efficient, low-cost, and non-noble metal oxide-based nanohybrid material for overall water splitting is a highly desirable approach to promote clean energy harnessing and to minimize environmental issues. Accordingly, we proposed an interfacial engineering approach to construct layered porous graphitic carbon nitride (g-C3N4)-stabilized Co2SnO4 inverse spinel nanohybrid materials as highly active bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. Here, a Co2SnO4/g-C3N4 nanohybrid with a layered porous g-C3N4 stabilized cubelike inverse spinel has been synthesized with an enhanced surface area via a simple one-pot hydrothermal method. Besides, detailed structural and morphological characterizations were carried out using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. Briefly, XPS analysis has revealed the existence of a strong coupling bond at the interface between a definite proportion of g-C3N4 nanosheets and the inverse spinel, which act as an electron transport channel to explore the exceptional performances for HER and OER. Compared to the Co2SnO4 inverse spinel lattice or g-C3N4 nanosheets, the prepared Co2SnO4/g-C3N4 nanohybrid-loaded 316 SSL mesh electrode showed excellent and stable electrocatalytic performances with very low overpotentials of 41 mV for HER and 260 mV for OER to reach the current density of 10 mA cm-2. To understand the electrocatalytic phenomena, the faradic efficiency was calculated for the prepared bifunctional electrocatalyst as 96%, which effectively would favor water electrolysis. Accordingly, the Co2SnO4/g-C3N4 nanohybrid-loaded electrodes were constructed, and the minimum cell voltage was found to be 1.52 V to reach the current density of 10 mA cm-2, which is comparable to the standard RuO2∥Pt/C in two-electrode systems. Thus, the developed nanohybrid-based electrocatalyst could be an alternative to noble metal-centered systems for highly efficient overall water splitting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助xryhhh采纳,获得10
刚刚
烟花应助轻歌水越采纳,获得10
1秒前
1秒前
1秒前
DY发布了新的文献求助10
2秒前
张瑜发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
嘿嘿嘿发布了新的文献求助10
3秒前
细腻亦巧完成签到,获得积分10
3秒前
wang完成签到,获得积分10
3秒前
星河梦枕完成签到,获得积分10
4秒前
sober关注了科研通微信公众号
4秒前
4秒前
GoGoGo完成签到,获得积分10
4秒前
高媛发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Hello应助zhang采纳,获得10
5秒前
weixiao完成签到,获得积分20
7秒前
传奇3应助Betty采纳,获得10
7秒前
BowieHuang应助子暮采纳,获得10
7秒前
Yang发布了新的文献求助20
8秒前
77完成签到,获得积分10
8秒前
园游会发布了新的文献求助10
8秒前
weixiao发布了新的文献求助10
10秒前
贪玩灵松发布了新的文献求助10
10秒前
维C完成签到 ,获得积分10
10秒前
11秒前
weihongjuan发布了新的文献求助10
11秒前
11秒前
乱泽华完成签到 ,获得积分10
11秒前
恬恬完成签到,获得积分10
13秒前
ECT完成签到,获得积分10
14秒前
慕青应助董卓小蛮腰采纳,获得10
15秒前
16秒前
科研通AI6应助wz采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836