石墨氮化碳
材料科学
分解水
X射线光电子能谱
双功能
电催化剂
尖晶石
化学工程
析氧
氮化碳
氮化物
无机化学
纳米技术
电化学
电极
催化作用
化学
物理化学
光催化
图层(电子)
生物化学
工程类
冶金
作者
Sathiya Bama Sundararaj,Saravanakumar Tamilarasan,T. Selvaraju
出处
期刊:Langmuir
[American Chemical Society]
日期:2022-06-16
卷期号:38 (25): 7833-7845
被引量:39
标识
DOI:10.1021/acs.langmuir.2c01095
摘要
Developing an efficient, low-cost, and non-noble metal oxide-based nanohybrid material for overall water splitting is a highly desirable approach to promote clean energy harnessing and to minimize environmental issues. Accordingly, we proposed an interfacial engineering approach to construct layered porous graphitic carbon nitride (g-C3N4)-stabilized Co2SnO4 inverse spinel nanohybrid materials as highly active bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. Here, a Co2SnO4/g-C3N4 nanohybrid with a layered porous g-C3N4 stabilized cubelike inverse spinel has been synthesized with an enhanced surface area via a simple one-pot hydrothermal method. Besides, detailed structural and morphological characterizations were carried out using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. Briefly, XPS analysis has revealed the existence of a strong coupling bond at the interface between a definite proportion of g-C3N4 nanosheets and the inverse spinel, which act as an electron transport channel to explore the exceptional performances for HER and OER. Compared to the Co2SnO4 inverse spinel lattice or g-C3N4 nanosheets, the prepared Co2SnO4/g-C3N4 nanohybrid-loaded 316 SSL mesh electrode showed excellent and stable electrocatalytic performances with very low overpotentials of 41 mV for HER and 260 mV for OER to reach the current density of 10 mA cm-2. To understand the electrocatalytic phenomena, the faradic efficiency was calculated for the prepared bifunctional electrocatalyst as 96%, which effectively would favor water electrolysis. Accordingly, the Co2SnO4/g-C3N4 nanohybrid-loaded electrodes were constructed, and the minimum cell voltage was found to be 1.52 V to reach the current density of 10 mA cm-2, which is comparable to the standard RuO2∥Pt/C in two-electrode systems. Thus, the developed nanohybrid-based electrocatalyst could be an alternative to noble metal-centered systems for highly efficient overall water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI