水解
活性污泥
化学
废物管理
碳源
氮气
发酵
碳纤维
碱性水解
制浆造纸工业
活性炭
污水处理
有机化学
材料科学
生物化学
工程类
吸附
复合材料
复合数
作者
Xuyan Liu,Hong Yang,Jiang Chang,Yongsheng Bai,Lüyuan Shi,Bojun Su,Jun Han,Duo Liang
标识
DOI:10.1016/j.psep.2022.06.064
摘要
To overcome the issue of substandard nitrogen and phosphorus discharge, resulting from the low carbon/nitrogen (C/N) ratio of municipal wastewater , immobilized filler was used to re-hydrolyze the alkaline fermentation liquid of waste activate sludge (WAS) as a nitrogen removing carbon source. The complex organic matter was further hydrolyzed and its denitrification efficiency as a carbon source for nitrogen removal was improved. Volatile fatty acids increased from 1605 ± 5 mg/L to 2546 ± 37 mg/L after re-hydrolysis of mixed-alkali sludge fermentation liquid, and complex organic matter, such as fulvic acids , humic acids , class I aromatic proteins, and soluble microbial products were hydrolyzed into small-molecule organics. When the re-hydrolysis fermentation liquid (RH-SFL) was used as the carbon source for nitrogen removal, the nitrogen removal effect was close to sodium acetate and the nitrogen removal rate (NRR) was up to 98.5 ± 0.5%. According to the NO X - -N removal curve, the reaction rate of RH-SFL was significantly higher than before re-hydrolysis (nRH-SFL) (0.486 > 0.38). This technology can significantly improve the effective organic quality in the alkaline fermentation liquid of WAS, which can be more easily utilized by denitrifying bacteria. This provides a feasible and effective solution for nitrogen removal in municipal wastewater with insufficient carbon.
科研通智能强力驱动
Strongly Powered by AbleSci AI