分数布朗运动
数学
独特性
同步(交流)
赫斯特指数
分数阶微积分
类型(生物学)
布朗运动
去趋势波动分析
应用数学
数学分析
拓扑(电路)
组合数学
统计
生态学
几何学
缩放比例
生物
作者
Xiuqi Huang,Hongfu Yang,Xiangjun Wang
摘要
This paper is devoted to dynamics of the Caputo‐type fractional FitzHugh–Nagumo equations (FHN) driven by fractional Brownian motion (fBm). The existence and uniqueness of mild solution for of the Caputo‐type fractional FHN are established, and the exponential synchronization and finite‐time synchronization for the stochastic FHN are provided. Finally, the numerical simulation of the synchronization for time‐fractional FHN perturbed by fBm is provided; the effects of the order of time fractional derivative and Hurst parameter on synchronization are also revealed.
科研通智能强力驱动
Strongly Powered by AbleSci AI