Comparative Predictive Performance of BPNN and SVM for Indian Insurance Companies

支持向量机 数据集 人工神经网络 数据挖掘 保险业 计算机科学 业务 精算学 人工智能
作者
Payal Bassi,Jasleen Kaur
出处
期刊:Emerald Publishing Limited eBooks [Emerald (MCB UP)]
卷期号:: 21-30
标识
DOI:10.1108/978-1-80262-637-720221002
摘要

Introduction: The insurance industry has unprecedented growth, and the demand for insurance has outgrown in the recent past due to the prevailing pandemic. The companies have a large base of the data set at their disposal, and companies must appropriately handle these data to come out with valuable solutions. Data mining enables insurance companies to gain an insightful approach to map strategies and gain competitive advantage, thus strengthening the profits that will allow them to identify the effectiveness of back-propagation neural network (BPNN) and support vector machines (SVMs) for the companies considered under study. Data mining techniques are the data-driven extraction techniques of information from large data repositories, thus discovering useful patterns from the voluminous data (Weiss & Indurkya, 1998).Purpose: The present study is performed to investigate the comparative performance of BPNNs and SVMs for the selected Indian insurance companies.Methodology: The study is conducted by extracting daily data of Indian insurance companies listed on the CNX 500. The data were then transformed into technical indicators for predictive model building using BPNN and SVMs. The daily data of the selected insurance companies for four years, that is, 1 April 2017 to 21 March 2021, were used for this. The data were further transformed into 90 data sets for different periods by categorising them into biannual, annual, and two-year collective data sets. Additionally, the comparison was made for the models generated with the help of BPNNs and SVMs for the six Indian insurance companies selected under this study.Findings: The findings of the study exhibited that the predictive performance of the BPNN and SVM models are significantly different from each other for SBI data, General Insurance Corporation of India (GICRE) data, HDFC data, New India Assurance Company Ltd. (NIACL) data, and ICICIPRULI data at a 5% level of significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如沐春风发布了新的文献求助10
1秒前
MR完成签到,获得积分10
2秒前
混沌完成签到,获得积分10
4秒前
5秒前
ytttt发布了新的文献求助10
5秒前
顺利兰完成签到 ,获得积分10
5秒前
楚某人发布了新的文献求助10
5秒前
机密塔完成签到,获得积分10
6秒前
七里香完成签到 ,获得积分10
7秒前
长生完成签到 ,获得积分10
7秒前
自由莺完成签到 ,获得积分10
7秒前
8秒前
英勇的糖豆完成签到,获得积分10
9秒前
CipherSage应助雨泽采纳,获得10
9秒前
花色苷儿完成签到 ,获得积分10
10秒前
11秒前
万能图书馆应助乔心采纳,获得10
12秒前
JY发布了新的文献求助30
13秒前
14秒前
14秒前
15秒前
18秒前
LY学生发布了新的文献求助10
19秒前
nanda完成签到,获得积分0
19秒前
lixialing完成签到,获得积分20
20秒前
负责新筠发布了新的文献求助10
21秒前
zjc完成签到,获得积分20
21秒前
Tiaaa完成签到,获得积分10
21秒前
ATLI完成签到 ,获得积分10
21秒前
拖延症IV期完成签到,获得积分10
23秒前
xiaou发布了新的文献求助10
23秒前
24秒前
光亮妙之完成签到,获得积分10
25秒前
乌乌发布了新的文献求助30
28秒前
745789完成签到 ,获得积分10
29秒前
上官若男应助负责新筠采纳,获得10
30秒前
努力搞科研完成签到,获得积分10
31秒前
失眠哈密瓜完成签到 ,获得积分10
32秒前
橙子完成签到 ,获得积分10
33秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672517
求助须知:如何正确求助?哪些是违规求助? 3228818
关于积分的说明 9782056
捐赠科研通 2939247
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736174