亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tourism efficiency decomposition and assessment of forest parks in China using dynamic network data envelopment analysis

数据包络分析 重新造林 生产(经济) 服务(商务) 旅游 植树造林 中国 环境经济学 业务 环境资源管理 地理 农业经济学 林业 经济 统计 营销 数学 宏观经济学 考古
作者
Xiu-juan Huang,Ran An,Ming‐Miin Yu,HE Fang-fang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:363: 132405-132405 被引量:16
标识
DOI:10.1016/j.jclepro.2022.132405
摘要

Forest resources are essential not only in the provision of tourism services, but also as the assets of ecological preservation, and so this study divides the overall operation process of forest parks into production and service processes in an unprecedented way. A modified slacks-based dynamic network data envelopment analysis (SBM-DNDEA) model is proposed to measure the overall, production, and service efficiencies of forest parks in China at a provincial level during the period 2009 to 2018. In the model, cumulative afforestation and reforestation area and social tourism employment are defined as carry-over items between production and service processes, respectively, in consecutive periods. In addition, an alternative aggregation procedure given by the model based on a weighted endogenous mechanism is proposed, which is easier to use and interpret in practical applications. The spatial-temporal differences and features are concluded and analyzed at the provincial and regional level. The results show differences in the overall efficiency, the production efficiency, and the service efficiency of forest parks across provinces in China. The study also finds that in terms of spatial differences, there is less variation in production efficiency among the five regions, but significant differences in service efficiency. The Southeast and the Southwest demonstrate the highest service efficiency score at more than 0.68. This is followed by the Northeast and the Northern, with a service efficiency score between 0.3 and 0.4. The Northwest has the lowest service efficiency score, at less than 0.3. Through these analyses, best performers and practices was identified and valuable insights was gained on how each province can improve associated inefficiencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜完成签到,获得积分10
3秒前
小元发布了新的文献求助20
1分钟前
1分钟前
碧蓝香芦完成签到 ,获得积分10
1分钟前
taku发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得150
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
jyy完成签到,获得积分0
1分钟前
矮小的盼夏完成签到 ,获得积分10
1分钟前
1分钟前
呱瓜瓜发布了新的文献求助10
2分钟前
2分钟前
2分钟前
背后雨柏完成签到 ,获得积分10
2分钟前
英俊的铭应助欢呼的寻双采纳,获得10
2分钟前
2分钟前
2分钟前
复杂荧发布了新的文献求助10
2分钟前
小元发布了新的文献求助20
2分钟前
小元完成签到,获得积分10
2分钟前
舟舟完成签到 ,获得积分10
2分钟前
mmhahaha完成签到 ,获得积分10
2分钟前
2分钟前
头大不愁发布了新的文献求助10
2分钟前
爆米花应助weiwei采纳,获得10
3分钟前
充电宝应助头大不愁采纳,获得10
3分钟前
cc完成签到,获得积分20
3分钟前
科研通AI5应助隐形的迎南采纳,获得10
3分钟前
头大不愁完成签到,获得积分10
3分钟前
Delight完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
aaa完成签到,获得积分20
3分钟前
科研通AI2S应助山高鹭沅采纳,获得10
3分钟前
妖精完成签到 ,获得积分10
4分钟前
杳鸢应助凶狠的zzx采纳,获得30
4分钟前
4分钟前
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497453
求助须知:如何正确求助?哪些是违规求助? 3081941
关于积分的说明 9169866
捐赠科研通 2775181
什么是DOI,文献DOI怎么找? 1522791
邀请新用户注册赠送积分活动 706258
科研通“疑难数据库(出版商)”最低求助积分说明 703339