Integrating nonlinear analysis and machine learning for human induced pluripotent stem cell‐based drug cardiotoxicity testing

心脏毒性 机器学习 诱导多能干细胞 人工智能 计算机科学 降维 药品 非线性系统 药理学 医学 化学 毒性 内科学 基因 量子力学 物理 胚胎干细胞 生物化学
作者
Andrew Kowalczewski,Courtney Sakolish,Plansky Hoang,Xiyuan Liu,Sabir Jacquir,Ivan Rusyn,Zhen Ma
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:16 (8): 732-743 被引量:1
标识
DOI:10.1002/term.3325
摘要

Utilizing recent advances in human induced pluripotent stem cell (hiPSC) technology, nonlinear analysis and machine learning we can create novel tools to evaluate drug-induced cardiotoxicity on human cardiomyocytes. With cardiovascular disease remaining the leading cause of death globally it has become imperative to create effective and modern tools to test the efficacy and toxicity of drugs to combat heart disease. The calcium transient signals recorded from hiPSC-derived cardiomyocytes (hiPSC-CMs) are highly complex and dynamic with great degrees of response characteristics to various drug treatments. However, traditional linear methods often fail to capture the subtle variation in these signals generated by hiPSC-CMs. In this work, we integrated nonlinear analysis, dimensionality reduction techniques and machine learning algorithms for better classifying the contractile signals from hiPSC-CMs in response to different drug exposure. By utilizing extracted parameters from a commercially available high-throughput testing platform, we were able to distinguish the groups with drug treatment from baseline controls, determine the drug exposure relative to IC50 values, and classify the drugs by its unique cardiac responses. By incorporating nonlinear parameters computed by phase space reconstruction, we were able to improve our machine learning algorithm's ability to predict cardiotoxic levels and drug classifications. We also visualized the effects of drug treatment and dosages with dimensionality reduction techniques, t-distributed stochastic neighbor embedding (t-SNE). We have shown that integration of nonlinear analysis and artificial intelligence has proven to be a powerful tool for analyzing cardiotoxicity and classifying toxic compounds through their mechanistic action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
基尼胎没完成签到 ,获得积分10
刚刚
刚刚
1秒前
ZYYYY完成签到,获得积分10
1秒前
111111发布了新的文献求助10
2秒前
楠D发布了新的文献求助10
3秒前
思源应助科研小王采纳,获得10
3秒前
PSL发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
iNk应助Tiako采纳,获得10
7秒前
7秒前
万能图书馆应助loveananya采纳,获得30
7秒前
科研通AI2S应助草木采纳,获得10
8秒前
yue发布了新的文献求助10
9秒前
我是老大应助晚风吹起来采纳,获得10
9秒前
852应助寒冷寒安采纳,获得10
10秒前
11秒前
楠D完成签到,获得积分10
11秒前
JJ田叶完成签到,获得积分10
11秒前
归诚发布了新的文献求助10
12秒前
雾霭迷茫发布了新的文献求助10
12秒前
13秒前
什聆完成签到,获得积分20
13秒前
15秒前
糖糖发布了新的文献求助10
16秒前
所所应助骆子军采纳,获得10
17秒前
小思完成签到 ,获得积分10
18秒前
米线ing完成签到,获得积分10
18秒前
Tiako完成签到,获得积分10
18秒前
yue关注了科研通微信公众号
18秒前
善良的翼发布了新的文献求助10
18秒前
Mini_Bread完成签到,获得积分10
18秒前
朵啦诶萌完成签到,获得积分10
18秒前
Wu发布了新的文献求助10
19秒前
20秒前
21秒前
勤恳凌丝关注了科研通微信公众号
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226