Integrating nonlinear analysis and machine learning for human induced pluripotent stem cell‐based drug cardiotoxicity testing

心脏毒性 机器学习 诱导多能干细胞 人工智能 计算机科学 降维 药品 非线性系统 药理学 医学 化学 毒性 内科学 基因 量子力学 物理 胚胎干细胞 生物化学
作者
Andrew Kowalczewski,Courtney Sakolish,Plansky Hoang,Xiyuan Liu,Sabir Jacquir,Ivan Rusyn,Zhen Ma
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:16 (8): 732-743 被引量:1
标识
DOI:10.1002/term.3325
摘要

Utilizing recent advances in human induced pluripotent stem cell (hiPSC) technology, nonlinear analysis and machine learning we can create novel tools to evaluate drug-induced cardiotoxicity on human cardiomyocytes. With cardiovascular disease remaining the leading cause of death globally it has become imperative to create effective and modern tools to test the efficacy and toxicity of drugs to combat heart disease. The calcium transient signals recorded from hiPSC-derived cardiomyocytes (hiPSC-CMs) are highly complex and dynamic with great degrees of response characteristics to various drug treatments. However, traditional linear methods often fail to capture the subtle variation in these signals generated by hiPSC-CMs. In this work, we integrated nonlinear analysis, dimensionality reduction techniques and machine learning algorithms for better classifying the contractile signals from hiPSC-CMs in response to different drug exposure. By utilizing extracted parameters from a commercially available high-throughput testing platform, we were able to distinguish the groups with drug treatment from baseline controls, determine the drug exposure relative to IC50 values, and classify the drugs by its unique cardiac responses. By incorporating nonlinear parameters computed by phase space reconstruction, we were able to improve our machine learning algorithm's ability to predict cardiotoxic levels and drug classifications. We also visualized the effects of drug treatment and dosages with dimensionality reduction techniques, t-distributed stochastic neighbor embedding (t-SNE). We have shown that integration of nonlinear analysis and artificial intelligence has proven to be a powerful tool for analyzing cardiotoxicity and classifying toxic compounds through their mechanistic action.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤朝雪发布了新的文献求助10
刚刚
LDML发布了新的文献求助10
刚刚
公茂源完成签到 ,获得积分10
3秒前
xxxxxb完成签到,获得积分10
3秒前
清晨牛完成签到,获得积分10
4秒前
5秒前
7秒前
LDML完成签到,获得积分10
7秒前
思源应助bailin采纳,获得10
8秒前
张红梨完成签到,获得积分10
8秒前
10秒前
无极微光应助jiao采纳,获得20
10秒前
ding应助LDML采纳,获得10
11秒前
12秒前
12秒前
空中风也完成签到 ,获得积分10
12秒前
棉花糖吖吖吖完成签到,获得积分10
13秒前
15秒前
15秒前
16秒前
远山完成签到 ,获得积分10
16秒前
17秒前
ruguo完成签到,获得积分10
17秒前
LTDJYYD完成签到,获得积分10
18秒前
CipherSage应助Sakura采纳,获得10
18秒前
CipherSage应助momo采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
柯柯驳回了Owen应助
21秒前
咸鱼发布了新的文献求助20
22秒前
che发布了新的文献求助10
23秒前
可可发布了新的文献求助10
23秒前
wishes完成签到 ,获得积分10
23秒前
24秒前
Cccsy完成签到,获得积分10
28秒前
dfuggh发布了新的文献求助10
30秒前
陈上心完成签到,获得积分20
33秒前
Fair完成签到,获得积分10
34秒前
34秒前
李爱国应助livialiu采纳,获得10
34秒前
感谢可靠赛君转发科研通微信,获得积分50
34秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580624
求助须知:如何正确求助?哪些是违规求助? 4665515
关于积分的说明 14756188
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528096
邀请新用户注册赠送积分活动 1497399
关于科研通互助平台的介绍 1466355