Integrating nonlinear analysis and machine learning for human induced pluripotent stem cell‐based drug cardiotoxicity testing

心脏毒性 机器学习 诱导多能干细胞 人工智能 计算机科学 降维 药品 非线性系统 药理学 医学 化学 毒性 内科学 基因 量子力学 物理 胚胎干细胞 生物化学
作者
Andrew Kowalczewski,Courtney Sakolish,Plansky Hoang,Xiyuan Liu,Sabir Jacquir,Ivan Rusyn,Zhen Ma
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:16 (8): 732-743 被引量:1
标识
DOI:10.1002/term.3325
摘要

Utilizing recent advances in human induced pluripotent stem cell (hiPSC) technology, nonlinear analysis and machine learning we can create novel tools to evaluate drug-induced cardiotoxicity on human cardiomyocytes. With cardiovascular disease remaining the leading cause of death globally it has become imperative to create effective and modern tools to test the efficacy and toxicity of drugs to combat heart disease. The calcium transient signals recorded from hiPSC-derived cardiomyocytes (hiPSC-CMs) are highly complex and dynamic with great degrees of response characteristics to various drug treatments. However, traditional linear methods often fail to capture the subtle variation in these signals generated by hiPSC-CMs. In this work, we integrated nonlinear analysis, dimensionality reduction techniques and machine learning algorithms for better classifying the contractile signals from hiPSC-CMs in response to different drug exposure. By utilizing extracted parameters from a commercially available high-throughput testing platform, we were able to distinguish the groups with drug treatment from baseline controls, determine the drug exposure relative to IC50 values, and classify the drugs by its unique cardiac responses. By incorporating nonlinear parameters computed by phase space reconstruction, we were able to improve our machine learning algorithm's ability to predict cardiotoxic levels and drug classifications. We also visualized the effects of drug treatment and dosages with dimensionality reduction techniques, t-distributed stochastic neighbor embedding (t-SNE). We have shown that integration of nonlinear analysis and artificial intelligence has proven to be a powerful tool for analyzing cardiotoxicity and classifying toxic compounds through their mechanistic action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助凉风有信9527采纳,获得10
刚刚
LEMON发布了新的文献求助20
1秒前
炜大的我完成签到,获得积分10
1秒前
haimianbaobao发布了新的文献求助10
1秒前
传奇3应助研友_nPoXoL采纳,获得10
1秒前
lpp完成签到,获得积分10
1秒前
1秒前
ww发布了新的文献求助10
1秒前
22发布了新的文献求助10
2秒前
zhui发布了新的文献求助10
2秒前
3秒前
Jenny应助哈哈哈哈采纳,获得10
4秒前
笨笨芯应助Miracle采纳,获得10
4秒前
研友_LJGpan完成签到,获得积分10
4秒前
xiaozhenA完成签到,获得积分10
4秒前
junzilan发布了新的文献求助10
4秒前
云澈发布了新的文献求助10
4秒前
Hello paper发布了新的文献求助20
5秒前
a111完成签到,获得积分10
5秒前
乐乐应助zzznznnn采纳,获得10
5秒前
哈哈完成签到,获得积分20
6秒前
阳光衣完成签到,获得积分0
6秒前
8秒前
苏兴龙关注了科研通微信公众号
8秒前
8秒前
脑洞疼应助谦让的含海采纳,获得10
8秒前
华华发布了新的文献求助10
8秒前
8秒前
Orange应助命运的X号采纳,获得10
8秒前
云澈完成签到,获得积分10
10秒前
风趣的觅山完成签到,获得积分10
10秒前
打打应助SCI采纳,获得50
10秒前
pinging应助Wang采纳,获得10
10秒前
10秒前
灵巧荆发布了新的文献求助10
11秒前
和谐续完成签到 ,获得积分10
11秒前
李健应助是天使呢采纳,获得10
11秒前
11秒前
12秒前
香菜兔子完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794