亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating nonlinear analysis and machine learning for human induced pluripotent stem cell‐based drug cardiotoxicity testing

心脏毒性 机器学习 诱导多能干细胞 人工智能 计算机科学 降维 药品 非线性系统 药理学 医学 化学 毒性 内科学 基因 量子力学 物理 胚胎干细胞 生物化学
作者
Andrew Kowalczewski,Courtney Sakolish,Plansky Hoang,Xiyuan Liu,Sabir Jacquir,Ivan Rusyn,Zhen Ma
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:16 (8): 732-743 被引量:1
标识
DOI:10.1002/term.3325
摘要

Utilizing recent advances in human induced pluripotent stem cell (hiPSC) technology, nonlinear analysis and machine learning we can create novel tools to evaluate drug-induced cardiotoxicity on human cardiomyocytes. With cardiovascular disease remaining the leading cause of death globally it has become imperative to create effective and modern tools to test the efficacy and toxicity of drugs to combat heart disease. The calcium transient signals recorded from hiPSC-derived cardiomyocytes (hiPSC-CMs) are highly complex and dynamic with great degrees of response characteristics to various drug treatments. However, traditional linear methods often fail to capture the subtle variation in these signals generated by hiPSC-CMs. In this work, we integrated nonlinear analysis, dimensionality reduction techniques and machine learning algorithms for better classifying the contractile signals from hiPSC-CMs in response to different drug exposure. By utilizing extracted parameters from a commercially available high-throughput testing platform, we were able to distinguish the groups with drug treatment from baseline controls, determine the drug exposure relative to IC50 values, and classify the drugs by its unique cardiac responses. By incorporating nonlinear parameters computed by phase space reconstruction, we were able to improve our machine learning algorithm's ability to predict cardiotoxic levels and drug classifications. We also visualized the effects of drug treatment and dosages with dimensionality reduction techniques, t-distributed stochastic neighbor embedding (t-SNE). We have shown that integration of nonlinear analysis and artificial intelligence has proven to be a powerful tool for analyzing cardiotoxicity and classifying toxic compounds through their mechanistic action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
打打应助科研通管家采纳,获得10
3秒前
wanci应助jjdeng采纳,获得10
5秒前
21秒前
24秒前
jjdeng发布了新的文献求助10
26秒前
jjdeng完成签到,获得积分10
32秒前
哭泣灯泡完成签到,获得积分10
38秒前
47秒前
1分钟前
1分钟前
1分钟前
衣裳薄发布了新的文献求助10
1分钟前
hhh完成签到 ,获得积分10
1分钟前
1分钟前
003完成签到,获得积分10
1分钟前
1分钟前
001完成签到,获得积分10
1分钟前
义气雁完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
002完成签到,获得积分10
2分钟前
万能图书馆应助Dec采纳,获得10
2分钟前
Ava应助不攻自破采纳,获得10
2分钟前
Sid完成签到,获得积分0
2分钟前
sk4ajd发布了新的文献求助10
2分钟前
2分钟前
2分钟前
不攻自破发布了新的文献求助10
2分钟前
璇别完成签到,获得积分10
2分钟前
852应助无聊又夏采纳,获得10
3分钟前
3分钟前
3分钟前
CipherSage应助璇别采纳,获得10
3分钟前
无聊又夏发布了新的文献求助10
3分钟前
3分钟前
Dec发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
科研通AI5应助guoze采纳,获得10
4分钟前
无聊又夏完成签到,获得积分10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965704
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214