Predicting and explaining severity of road accident using artificial intelligence techniques, SHAP and feature analysis

范围(计算机科学) 人工智能 事故(哲学) 计算机科学 机器学习 法律工程学 工程类 哲学 认识论 程序设计语言
作者
Chakradhara Panda,Alok Kumar Mishra,Aruna Kumar Dash,Hedaytullah Nawab
出处
期刊:International Journal of Crashworthiness [Taylor & Francis]
卷期号:28 (2): 186-201 被引量:20
标识
DOI:10.1080/13588265.2022.2074643
摘要

AbstractAbstractThe accurate prediction of accident severity has become an active area of research in recent years, although studies in certain regions such as South Asia and Sub-Saharan Africa are comparatively less. In this study, we aim to contribute in many ways: (i) we conduct an analytical review of the literature to gauge the interest and scope of existing studies and identify the direction for further research, and (ii) a mixture of old and relatively new artificial intelligence (AI) techniques is applied to road accident data of India (iii) we employ shapley additive explanations (SHAP) for interpretation of AI model predictions, and (iv) an AI-enabled accident management system is proposed. The findings suggest that AI models are capable of predicting the accident severity. Precisely, the gradient boosting machine attains the best test accuracy. Among features, commercial vehicles, excess speed, national highways, and pedestrians' fault are responsible for accidental road killings.Keywords: Accident severity predictionartificial intelligencemachine learningSHAPfeature analysisAI-enabled accident management systemroad safetyJEL Code: R41B23C53 AcknowledgementAuthors are grateful to the anonymous referee for useful comments. The views expressed in this article are personal. Usual disclaimers apply.Disclosure statementNo potential conflict of interest was reported by the authors.Availability of data and materialThe data that support the findings of this study are openly available in the public domain: https://morth.nic.in/transport-research-wing.Code availabilityAvailable on special request to Authors.Additional informationFundingThis research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Correction StatementThis article has been republished with minor changes. These changes do not impact the academic content of the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OA完成签到,获得积分10
刚刚
深情安青应助Jiachenchen采纳,获得10
刚刚
biocreater完成签到,获得积分10
刚刚
Ansaista完成签到,获得积分10
刚刚
刚刚
Zsl121完成签到,获得积分10
1秒前
能干的小海豚完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
964230130发布了新的文献求助10
4秒前
5秒前
zxj发布了新的文献求助10
5秒前
老阳发布了新的文献求助10
7秒前
7秒前
SHEN由于求助违规,被管理员扣积分40
8秒前
大模型应助lsy采纳,获得10
8秒前
研友_8oBQ3Z发布了新的文献求助10
9秒前
早岁完成签到,获得积分10
9秒前
AiQi发布了新的文献求助10
9秒前
mou发布了新的文献求助10
11秒前
tttp完成签到,获得积分10
11秒前
11秒前
wqq完成签到,获得积分10
12秒前
昕想事成完成签到,获得积分10
12秒前
12秒前
13秒前
16秒前
研友_8oBQ3Z完成签到,获得积分10
16秒前
泊声发布了新的文献求助20
17秒前
964230130发布了新的文献求助10
18秒前
ZZXMM完成签到,获得积分20
18秒前
20秒前
22秒前
和谐面包完成签到,获得积分10
23秒前
lsy发布了新的文献求助10
25秒前
28秒前
Eddie完成签到,获得积分10
28秒前
找找发布了新的文献求助10
28秒前
酷波er应助泊声采纳,获得20
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843