脚手架
生物信息学
计算生物学
支架蛋白
功能分析
蛋白质设计
蛋白质二级结构
序列(生物学)
计算机科学
蛋白质结构
人工智能
生物
生物化学
信号转导
基因
数据库
作者
Jue Wang,Sidney Lisanza,David Juergens,Doug Tischer,Joseph L. Watson,Karla M. Castro,Robert J. Ragotte,Amijai Saragovi,Lukas F. Milles,Minkyung Baek,Ivan Anishchenko,Wei Yang,Derrick R. Hicks,Marc Expòsit,Thomas Schlichthaerle,Jung-Ho Chun,Justas Dauparas,Nathaniel R. Bennett,Basile I. M. Wicky,Andrew Muenks
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2022-07-21
卷期号:377 (6604): 387-394
被引量:312
标识
DOI:10.1126/science.abn2100
摘要
The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. Here, we describe deep learning approaches for scaffolding such functional sites without needing to prespecify the fold or secondary structure of the scaffold. The first approach, "constrained hallucination," optimizes sequences such that their predicted structures contain the desired functional site. The second approach, "inpainting," starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network. We use these two methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins and validate the designs using a combination of in silico and experimental tests.
科研通智能强力驱动
Strongly Powered by AbleSci AI