Unsupervised Learning-Based Framework for Deepfake Video Detection

计算机科学 人工智能 聚类分析 水准点(测量) 无监督学习 面子(社会学概念) 模式识别(心理学) 深度学习 机器学习 社会科学 大地测量学 社会学 地理
作者
Li Zhang,Tong Qiao,Ming Xu,Ning Zheng,Shichuang Xie
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 4785-4799 被引量:20
标识
DOI:10.1109/tmm.2022.3182509
摘要

With the continuous development of computer hardware equipment and deep learning technology, it is easier for people to swap faces in videos by currently-emerging multimedia tampering tools, such as the most popular deepfake. It would bring a series of new threats of security. Although many forensic researches have focused on this new type of manipulation and achieved high detection accuracy, most of which are based on supervised learning mechanism with requiring a large number of labeled samples for training. In this paper, we first develop a novel unsupervised detection manner for identifying deepfake videos. The main fundamental behind our proposed method is that the face region in the real video is taken by the camera while its counterpart in the deepfake video is usually generated by the computer; the provenance of two videos is totally different. Specifically, our method includes two clustering stages based on Photo-Response Non-Uniformity (PRNU) and noiseprint feature. Firstly, the PRNU fingerprint of each video frame is extracted, which is used to cluster the full-size identical source video (regardless of its real or fake). Secondly, we extract the noiseprint from the face region of the video, which is used to identify (re-cluster for the task of binary classification) the deepfake sample in each cluster. Numerical experiments verify our proposed unsupervised method performs very well on our own dataset and the benchmark FF++ dataset. More importantly, its performance rivals that of the supervised-based state-of-the-art detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliuliu完成签到 ,获得积分10
1秒前
Lucas应助冰糖葫芦采纳,获得10
4秒前
深情安青应助zyy采纳,获得10
4秒前
大观天下发布了新的文献求助10
5秒前
Momo完成签到,获得积分10
6秒前
8秒前
9秒前
Ava应助Momo采纳,获得10
10秒前
shelmon完成签到 ,获得积分20
14秒前
小正发布了新的文献求助10
15秒前
15秒前
夏末的晨曦发布了新的文献求助300
15秒前
17秒前
shelmon关注了科研通微信公众号
18秒前
潇潇洒洒完成签到 ,获得积分10
18秒前
zxfaaaaa发布了新的文献求助10
21秒前
21秒前
宗师算个瓢啊完成签到 ,获得积分10
21秒前
樱桃汽水怪兽完成签到,获得积分10
22秒前
安逸1发布了新的文献求助10
22秒前
星辰大海应助Heng采纳,获得10
22秒前
小正完成签到,获得积分10
24秒前
郑荻凡完成签到,获得积分10
24秒前
Wang完成签到 ,获得积分10
25秒前
25秒前
31秒前
笑点低千愁完成签到,获得积分20
32秒前
33秒前
34秒前
lss完成签到,获得积分10
35秒前
Momo发布了新的文献求助10
38秒前
Ywffffff完成签到 ,获得积分10
39秒前
随机子应助zxfaaaaa采纳,获得10
40秒前
红鲤完成签到,获得积分10
41秒前
了凡完成签到 ,获得积分10
42秒前
周小满完成签到,获得积分10
44秒前
abbsdan发布了新的文献求助10
44秒前
独特夜绿完成签到,获得积分10
44秒前
谦让碧菡完成签到,获得积分10
47秒前
LK完成签到 ,获得积分10
50秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816530
关于积分的说明 7913032
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388