催化作用
解吸
溶剂
胺气处理
布朗斯特德-洛瑞酸碱理论
化学工程
化学
烟气
纳米材料
材料科学
无机化学
吸附
纳米技术
有机化学
工程类
作者
Yuchen Li,Zhen Chen,Guoxiong Zhan,Bingling Yuan,Lidong Wang,Junhua Li
标识
DOI:10.1016/j.seppur.2022.121676
摘要
• Solid acid catalysts are designed to reduce to energy consumption for low-cost carbon capture from industrial flue gas. • Microstructure and chemical state of heterointerface is detailed by various measurements. • The created coordination of Ni(Fe)–N and Ni(Fe)–N–Ni(Fe) stimulates the production of Brønsted acid sites. • Ni/Fe@COF has an obvious promotion for solvent regeneration and CO 2 desorption. • The Ni/Fe atoms around heterointerface is the main active center for catalytic reaction. Catalytic amine-based solvent regeneration with solid acid is a feasible option for reducing energy consumption of CO 2 capture, but facing crucial challenges on designing material structures and understanding reaction mechanisms. Herein, we cover the nanoscale NiFe 2 O 4 cluster with covalent organic frameworks (COFs), to prepare solid acid catalysts. The pristine chemical bonds of Ni(Fe)-O and Ni(Fe)-Ni(Fe) are substituted by Ni(Fe)-N and Ni(Fe)-N-Ni(Fe) by targeting the anchoring of NiFe 2 O 4 cluster over COFs. The created coordination state stimulates the production of Brønsted acid sites. The obtained nanomaterials achieve a considerable improvement in CO 2 desorption of up to 290.1 mmol/(min·g) at 88 °C for spent monoethanolamine (MEA) solvent, representing a substantial increase of 540% relative to traditional thermal desorption. Consequently, the energy consumption of MEA generation is reduced by approximately 58%. Intermediate species (HCO 3− , CO 3 2− , and RNHCOO − ) and reaction pathways are established by combining operando Raman spectroscopy and ex situ 13 C NMR spectrum measurements. Theoretical calculations are performed to clarify the transformation mechanism of the acid sites around Ni/Fe atoms and its intrinsic role in the adsorption equilibrium of solvent regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI