Vulmg: A Static Detection Solution For Source Code Vulnerabilities Based On Code Property Graph and Graph Attention Network

计算机科学 邻接矩阵 源代码 图形 财产(哲学) 编码(集合论) 功能(生物学) 理论计算机科学 人工智能 脆弱性(计算) 脆弱性评估 机器学习 数据挖掘 计算机安全 程序设计语言 哲学 集合(抽象数据类型) 认识论 进化生物学 生物 心理学 心理弹性 心理治疗师
作者
Haojie Zhang,Yujun Li,Yiwei Liu,Nan-Xin Zhou
标识
DOI:10.1109/iccwamtip53232.2021.9674145
摘要

As the number of vulnerabilities continues to rise, security incidents triggered by vulnerabilities emerge endlessly. Current vulnerability detection methods still have some problems, such as detecting only a single function, relying heavily on expert knowledge, and being unable to achieve automation. According to the observation of the Juliet dataset, we find vulnerability exists not only within the single function but also between the called function and the calling function. Meanwhile, there are some differences between vulnerable functions and non-vulnerable functions in the code property graph. Therefore, this article proposes a vulnerability detection solution named VULMG, which converts vulnerability detection into the graph classification problem. VULMG includes a vectorization component named VecG and a deep learning classification model named MGGAT. Based on the code property graph, VecG extracts the lexical, grammatical, and semantic information of the source code as a feature matrix and extracts information such as structure, control, and dependence as three adjacency matrices. MGGAT is a deep learning model based on the graph attention network, which is used for graph classification. Besides, VULMG uses the FCG to associate the calling function with the called function so that it can detect the cross-function vulnerabilities. We selected CWE369 and CWE476 from the Juliet dataset for testing, and the F1 scores were 94.43% and 96.3%. The evaluation results indicate that VULMG outperforms Flawfinder, RATS, BiLSTM, SVM, and GCN, which verifies the effectiveness of the proposed solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaozhang完成签到 ,获得积分10
1秒前
popo完成签到,获得积分10
1秒前
Zoe完成签到,获得积分10
1秒前
hardyx完成签到,获得积分10
2秒前
鲤鱼野狼完成签到,获得积分10
2秒前
茶柠完成签到,获得积分10
3秒前
隐形曼青应助Susan采纳,获得10
3秒前
小二郎应助jessica采纳,获得30
3秒前
14完成签到,获得积分10
4秒前
Jasper应助彩色的水云采纳,获得10
4秒前
sure完成签到 ,获得积分10
5秒前
田様应助海燕采纳,获得30
5秒前
轻松的库尔完成签到 ,获得积分10
6秒前
白兰鸽完成签到,获得积分20
6秒前
terence完成签到,获得积分10
6秒前
DAN完成签到 ,获得积分10
6秒前
酷波er应助kevin21采纳,获得10
6秒前
7秒前
liusui完成签到 ,获得积分10
7秒前
7秒前
9秒前
boshazhiwu完成签到 ,获得积分10
9秒前
nerchywi发布了新的文献求助10
9秒前
10秒前
fffff完成签到,获得积分10
10秒前
qin完成签到,获得积分10
10秒前
完美的秋寒完成签到,获得积分10
11秒前
小张完成签到,获得积分10
11秒前
Harish完成签到,获得积分10
11秒前
Eureka发布了新的文献求助10
12秒前
12秒前
光亮灯泡发布了新的文献求助20
12秒前
小巧的可仁完成签到 ,获得积分10
13秒前
13秒前
ccq完成签到,获得积分10
14秒前
15秒前
Bob发布了新的文献求助30
15秒前
慕青应助344061512采纳,获得10
15秒前
muyingleng应助cui采纳,获得10
15秒前
迷路的游侠完成签到,获得积分10
16秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344674
求助须知:如何正确求助?哪些是违规求助? 2971513
关于积分的说明 8649657
捐赠科研通 2651782
什么是DOI,文献DOI怎么找? 1452089
科研通“疑难数据库(出版商)”最低求助积分说明 672394
邀请新用户注册赠送积分活动 661922