Vulmg: A Static Detection Solution For Source Code Vulnerabilities Based On Code Property Graph and Graph Attention Network

计算机科学 邻接矩阵 源代码 图形 财产(哲学) 编码(集合论) 功能(生物学) 理论计算机科学 人工智能 脆弱性(计算) 脆弱性评估 机器学习 数据挖掘 计算机安全 程序设计语言 哲学 集合(抽象数据类型) 认识论 进化生物学 生物 心理学 心理弹性 心理治疗师
作者
Haojie Zhang,Yujun Li,Yiwei Liu,Nan-Xin Zhou
标识
DOI:10.1109/iccwamtip53232.2021.9674145
摘要

As the number of vulnerabilities continues to rise, security incidents triggered by vulnerabilities emerge endlessly. Current vulnerability detection methods still have some problems, such as detecting only a single function, relying heavily on expert knowledge, and being unable to achieve automation. According to the observation of the Juliet dataset, we find vulnerability exists not only within the single function but also between the called function and the calling function. Meanwhile, there are some differences between vulnerable functions and non-vulnerable functions in the code property graph. Therefore, this article proposes a vulnerability detection solution named VULMG, which converts vulnerability detection into the graph classification problem. VULMG includes a vectorization component named VecG and a deep learning classification model named MGGAT. Based on the code property graph, VecG extracts the lexical, grammatical, and semantic information of the source code as a feature matrix and extracts information such as structure, control, and dependence as three adjacency matrices. MGGAT is a deep learning model based on the graph attention network, which is used for graph classification. Besides, VULMG uses the FCG to associate the calling function with the called function so that it can detect the cross-function vulnerabilities. We selected CWE369 and CWE476 from the Juliet dataset for testing, and the F1 scores were 94.43% and 96.3%. The evaluation results indicate that VULMG outperforms Flawfinder, RATS, BiLSTM, SVM, and GCN, which verifies the effectiveness of the proposed solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
madison发布了新的文献求助30
刚刚
Leohp完成签到,获得积分10
刚刚
隐形曼青应助开心如冬采纳,获得10
1秒前
JiahaoRao完成签到,获得积分20
1秒前
Eazin完成签到,获得积分10
1秒前
2秒前
一个O完成签到,获得积分10
2秒前
柔弱的老三完成签到,获得积分10
2秒前
繁星若塵发布了新的文献求助30
2秒前
123free完成签到,获得积分10
3秒前
日暮里完成签到,获得积分10
4秒前
duyu完成签到 ,获得积分10
5秒前
举人烧烤发布了新的文献求助10
5秒前
情怀应助眼睛大乐松采纳,获得10
5秒前
6秒前
善学以致用应助果实采纳,获得10
7秒前
李明月完成签到,获得积分10
7秒前
心碎的黄焖鸡完成签到 ,获得积分10
7秒前
66完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
蛋蛋姐姐完成签到,获得积分10
8秒前
大力的飞莲完成签到,获得积分10
8秒前
辣椒完成签到,获得积分10
9秒前
老迟到的迎夏完成签到,获得积分10
9秒前
封志泽发布了新的文献求助50
10秒前
虚拟的姒发布了新的文献求助10
10秒前
CodeCraft应助qqwrv采纳,获得10
10秒前
11秒前
11秒前
不可以懒懒完成签到,获得积分10
11秒前
Jasper应助Bao采纳,获得10
11秒前
yu完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
13秒前
高帅发布了新的文献求助10
13秒前
文静的可仁完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128