A highly stable 1.3 V organic cathode for aqueous zinc batteries designed in-situ by solid-state electrooxidation

电化学 水溶液 电解质 阴极 材料科学 化学工程 有机自由基电池 法拉第效率 聚合 电极 咔唑 无机化学 化学 纳米技术 聚合物 有机化学 物理化学 复合材料 工程类
作者
Uttam Mittal,Fabio Colasuonno,Aditya Rawal,Martina Lessio,Dipan Kundu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:46: 129-137 被引量:25
标识
DOI:10.1016/j.ensm.2022.01.004
摘要

Aqueous zinc batteries (AZBs) with organic cathodes are attractive large-scale storage candidates thanks to the inherent safety and inexpensiveness of the AZB chemistry and sustainability and diverse redox functions offered by organic materials. Polymer type hosts are particularly appealing for their insolubility in mildly acidic aqueous electrolytes, which renders stable cycling. However, the scalability of their chemical and/or electrochemical synthesis via solution polymerization can be a concern. Moving away from the solution method, here we introduce the solid-state electrooxidation strategy for the in-situ design of a novel host - dicarbazyl - by electrooxidative coupling of N-phenyl carbazole. The electrolyte has a decisive influence on the extent of the irreversible dimerization and thus on the subsequent electrochemistry. Favorable electrode kinetics together with in-situ derived film like morphology covering the conducting nanocarbon enables an attractive ⁓100 mAh g−1 reversible capacity at 1.3 V against Zn by a reversible p-doping/de-doping charge storage mechanism, >95% capacity retention over 1000 cycles at nearly 100% Coulombic efficiency, and excellent rate capability. The oxidative formation of the host and its reversible electrochemistry is confirmed by electrochemical, spectroscopic, and density functional theory investigations. This first demonstration of the solid-state electrooxidation strategy for an organic electrode design opens a new paradigm of high performance organic electrodes development by a potentially scalable approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaozhang完成签到,获得积分10
刚刚
科研小民工应助Jinji采纳,获得200
刚刚
1秒前
Elaine完成签到,获得积分10
1秒前
h41692011完成签到 ,获得积分10
1秒前
斯文败类应助圆圆采纳,获得30
2秒前
李健的小迷弟应助7777777采纳,获得10
2秒前
涛浪驳回了田様应助
2秒前
2秒前
2秒前
3秒前
3秒前
个木发布了新的文献求助10
3秒前
上官若男应助SY采纳,获得10
4秒前
不易BY完成签到,获得积分10
4秒前
ee关闭了ee文献求助
4秒前
Ysh完成签到,获得积分20
4秒前
拼搏念蕾完成签到 ,获得积分10
4秒前
一页完成签到,获得积分10
5秒前
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
5秒前
科研通AI2S应助VDC采纳,获得10
5秒前
wwt发布了新的文献求助10
5秒前
务实大船完成签到,获得积分10
6秒前
蜗牛撵大象完成签到,获得积分10
6秒前
7秒前
sun发布了新的文献求助10
7秒前
7秒前
二二二发布了新的文献求助10
8秒前
开心的傲安完成签到,获得积分20
8秒前
麻麻完成签到,获得积分20
8秒前
DDTT完成签到,获得积分10
9秒前
霸气的念云完成签到,获得积分10
9秒前
Orange应助欢呼小蚂蚁采纳,获得10
9秒前
9秒前
SQ完成签到,获得积分10
10秒前
10秒前
飞跃海龙完成签到 ,获得积分10
10秒前
ufuon发布了新的文献求助10
11秒前
momo完成签到,获得积分10
12秒前
赘婿应助二二二采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678